BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 37346053)

  • 1. Maneuvering on non-Newtonian fluidic terrain: a survey of animal and bio-inspired robot locomotion techniques on soft yielding grounds.
    Godon S; Kruusmaa M; Ristolainen A
    Front Robot AI; 2023; 10():1113881. PubMed ID: 37346053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EuMoBot: replicating euglenoid movement in a soft robot.
    Digumarti KM; Conn AT; Rossiter J
    J R Soc Interface; 2018 Nov; 15(148):. PubMed ID: 30464056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Non-Newtonian Fluid Robot.
    Hachmon G; Mamet N; Sasson S; Barkai T; Hadar N; Abu-Horowitz A; Bachelet I
    Artif Life; 2016; 22(1):1-22. PubMed ID: 26799925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terrain Adaptability and Optimum Contact Stiffness of Vibro-bot with Arrayed Soft Legs.
    Yan Y; Shui L; Liu S; Liu Z; Liu Y
    Soft Robot; 2022 Oct; 9(5):981-990. PubMed ID: 34842452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Insect-Inspired Terrains-Adaptive Soft Millirobot with Multimodal Locomotion and Transportation Capability.
    Huang H; Feng Y; Yang X; Yang L; Shen Y
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot with Magnetic Actuation.
    Joyee EB; Pan Y
    Soft Robot; 2019 Jun; 6(3):333-345. PubMed ID: 30720388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Ambidextrous STarfish-Inspired Exploration and Reconnaissance Robot (The ASTER-bot).
    Bell MA; Weaver JC; Wood RJ
    Soft Robot; 2022 Oct; 9(5):991-1000. PubMed ID: 34978920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems.
    Aguilar J; Zhang T; Qian F; Kingsbury M; McInroe B; Mazouchova N; Li C; Maladen R; Gong C; Travers M; Hatton RL; Choset H; Umbanhowar PB; Goldman DI
    Rep Prog Phys; 2016 Nov; 79(11):110001. PubMed ID: 27652614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotion of arthropods in aquatic environment and their applications in robotics.
    Kwak B; Bae J
    Bioinspir Biomim; 2018 May; 13(4):041002. PubMed ID: 29508773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait and locomotion analysis of a soft-hybrid multi-legged modular miniature robot.
    Mahkam N; Özcan O
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34492650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a Bio-Inspired Untethered Soft Octopodal Robot Driven by Magnetic Field.
    Xu R; Xu Q
    Biomimetics (Basel); 2023 Jun; 8(3):. PubMed ID: 37504157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain.
    Li C; Pullin AO; Haldane DW; Lam HK; Fearing RS; Full RJ
    Bioinspir Biomim; 2015 Jun; 10(4):046003. PubMed ID: 26098002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically Activated Soft Robots: Speed Up by Rolling.
    Li WB; Zhang WM; Gao QH; Guo Q; Wu S; Zou HX; Peng ZK; Meng G
    Soft Robot; 2021 Oct; 8(5):611-624. PubMed ID: 33180656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral Oscillation and Body Compliance Help Snakes and Snake Robots Stably Traverse Large, Smooth Obstacles.
    Fu Q; Gart SW; Mitchel TW; Kim JS; Chirikjian GS; Li C
    Integr Comp Biol; 2020 Jul; 60(1):171-179. PubMed ID: 32215569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundamentals of soft robot locomotion.
    Calisti M; Picardi G; Laschi C
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28539483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principles of appendage design in robots and animals determining terradynamic performance on flowable ground.
    Qian F; Zhang T; Korff W; Umbanhowar PB; Full RJ; Goldman DI
    Bioinspir Biomim; 2015 Oct; 10(5):056014. PubMed ID: 26448267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-inspired annelid robot: a dielectric elastomer actuated soft robot.
    Xu L; Chen HQ; Zou J; Dong WT; Gu GY; Zhu LM; Zhu XY
    Bioinspir Biomim; 2017 Jan; 12(2):025003. PubMed ID: 28141580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid Inspired Research on the Flying-Jumping Locomotion of Locusts Using Robot Counterpart.
    Wei D; Gao T; Li Z; Mo X; Zheng S; Zhou C
    Front Neurorobot; 2019; 13():87. PubMed ID: 31708764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait-optimized locomotion of wave-driven soft sheets.
    Miller PW; Dunkel J
    Soft Matter; 2020 Apr; 16(16):3991-3999. PubMed ID: 32255142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.