These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 37346622)

  • 1. Remote sensing image analysis and prediction based on improved Pix2Pix model for water environment protection of smart cities.
    Wang L; Li W; Wang X; Xu J
    PeerJ Comput Sci; 2023; 9():e1292. PubMed ID: 37346622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A generalized image quality improvement strategy of cone-beam CT using multiple spectral CT labels in Pix2pix GAN.
    Jiang Y; Zhang Y; Luo C; Yang P; Wang J; Liang X; Zhao W; Li R; Niu T
    Phys Med Biol; 2022 May; 67(11):. PubMed ID: 35487206
    [No Abstract]   [Full Text] [Related]  

  • 3. A Second-Order Method for Removing Mixed Noise from Remote Sensing Images.
    Zhou Y; Ren C; Zhang S; Xue X; Liu Y; Lu J; Ding C
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote sensing image dehazing using generative adversarial network with texture and color space enhancement.
    Shen H; Zhong T; Jia Y; Wu C
    Sci Rep; 2024 May; 14(1):12382. PubMed ID: 38811675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lightweight Deep Neural Network Method for Water Body Extraction from High-Resolution Remote Sensing Images with Multisensors.
    Wang Y; Li S; Lin Y; Wang M
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote Sensing Image Dehazing through an Unsupervised Generative Adversarial Network.
    Zhao L; Yin Y; Zhong T; Jia Y
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water body extraction from high spatial resolution remote sensing images based on enhanced U-Net and multi-scale information fusion.
    Cao H; Tian Y; Liu Y; Wang R
    Sci Rep; 2024 Jul; 14(1):16132. PubMed ID: 38997473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network.
    Cui J; Gong K; Han P; Liu H; Li Q
    Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AGs-Unet: Building Extraction Model for High Resolution Remote Sensing Images Based on Attention Gates U Network.
    Yu M; Chen X; Zhang W; Liu Y
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Convolutional Neural Network with Spatial Location Integration for Nearshore Water Depth Inversion.
    He C; Jiang Q; Tao G; Zhang Z
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New deep learning method for efficient extraction of small water from remote sensing images.
    Luo Y; Feng A; Li H; Li D; Wu X; Liao J; Zhang C; Zheng X; Pu H
    PLoS One; 2022; 17(8):e0272317. PubMed ID: 35930531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pix2pix Conditional Generative Adversarial Networks for Scheimpflug Camera Color-Coded Corneal Tomography Image Generation.
    Abdelmotaal H; Abdou AA; Omar AF; El-Sebaity DM; Abdelazeem K
    Transl Vis Sci Technol; 2021 Jun; 10(7):21. PubMed ID: 34132759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swin-HSTPS: Research on Target Detection Algorithms for Multi-Source High-Resolution Remote Sensing Images.
    Fang K; Ouyang J; Hu B
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridging the resources gap: deep learning for fluorescein angiography and optical coherence tomography macular thickness map image translation.
    Abdelmotaal H; Sharaf M; Soliman W; Wasfi E; Kedwany SM
    BMC Ophthalmol; 2022 Sep; 22(1):355. PubMed ID: 36050661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformer based on channel-spatial attention for accurate classification of scenes in remote sensing image.
    Guo J; Jia N; Bai J
    Sci Rep; 2022 Sep; 12(1):15473. PubMed ID: 36104442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Multi-Modal Deep-Learning Air Quality Prediction Method Based on Multi-Station Time-Series Data and Remote-Sensing Images: Case Study of Beijing and Tianjin.
    Xia H; Chen X; Wang Z; Chen X; Dong F
    Entropy (Basel); 2024 Jan; 26(1):. PubMed ID: 38275499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving CBCT quality to CT level using deep learning with generative adversarial network.
    Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K
    Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudo-CT generation from multi-parametric MRI using a novel multi-channel multi-path conditional generative adversarial network for nasopharyngeal carcinoma patients.
    Tie X; Lam SK; Zhang Y; Lee KH; Au KH; Cai J
    Med Phys; 2020 Apr; 47(4):1750-1762. PubMed ID: 32012292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.