These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37346802)

  • 21. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses.
    Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R
    Elife; 2020 Oct; 9():. PubMed ID: 33074102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Can a Deep-learning Model for the Automated Detection of Vertebral Fractures Approach the Performance Level of Human Subspecialists?
    Li YC; Chen HH; Horng-Shing Lu H; Hondar Wu HT; Chang MC; Chou PH
    Clin Orthop Relat Res; 2021 Jul; 479(7):1598-1612. PubMed ID: 33651768
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fully automated coronary artery calcium quantification on electrocardiogram-gated non-contrast cardiac computed tomography using deep-learning with novel Heart-labelling method.
    Takahashi D; Fujimoto S; Nozaki YO; Kudo A; Kawaguchi YO; Takamura K; Hiki M; Sato E; Tomizawa N; Daida H; Minamino T
    Eur Heart J Open; 2023 Nov; 3(6):oead113. PubMed ID: 38035036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CardiSort: a convolutional neural network for cross vendor automated sorting of cardiac MR images.
    Lim RP; Kachel S; Villa ADM; Kearney L; Bettencourt N; Young AA; Chiribiri A; Scannell CM
    Eur Radiol; 2022 Sep; 32(9):5907-5920. PubMed ID: 35368227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-contrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection.
    Avard E; Shiri I; Hajianfar G; Abdollahi H; Kalantari KR; Houshmand G; Kasani K; Bitarafan-Rajabi A; Deevband MR; Oveisi M; Zaidi H
    Comput Biol Med; 2022 Feb; 141():105145. PubMed ID: 34929466
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Landmark Detection in Cardiac MRI by Using a Convolutional Neural Network.
    Xue H; Artico J; Fontana M; Moon JC; Davies RH; Kellman P
    Radiol Artif Intell; 2021 Sep; 3(5):e200197. PubMed ID: 34617022
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep Transfer Learning with Enhanced Feature Fusion for Detection of Abnormalities in X-ray Images.
    Alammar Z; Alzubaidi L; Zhang J; Li Y; Lafta W; Gu Y
    Cancers (Basel); 2023 Aug; 15(15):. PubMed ID: 37568821
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep learning to diagnose cardiac amyloidosis from cardiovascular magnetic resonance.
    Martini N; Aimo A; Barison A; Della Latta D; Vergaro G; Aquaro GD; Ripoli A; Emdin M; Chiappino D
    J Cardiovasc Magn Reson; 2020 Dec; 22(1):84. PubMed ID: 33287829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Stress Test of Artificial Intelligence: Can Deep Learning Models Trained From Formal Echocardiography Accurately Interpret Point-of-Care Ultrasound?
    Crockett D; Kelly C; Brundage J; Jones J; Ockerse P
    J Ultrasound Med; 2022 Dec; 41(12):3003-3012. PubMed ID: 35560254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DIY AI, deep learning network development for automated image classification in a point-of-care ultrasound quality assurance program.
    Blaivas M; Arntfield R; White M
    J Am Coll Emerg Physicians Open; 2020 Apr; 1(2):124-131. PubMed ID: 33000024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A deep learning method for the automated assessment of paradoxical pulsation after myocardial infarction using multicenter cardiac MRI data.
    Chen BH; Wu CW; An DA; Zhang JL; Zhang YH; Yu LZ; Watson K; Wesemann L; Hu J; Chen WB; Xu JR; Zhao L; Feng C; Jiang M; Pu J; Wu LM
    Eur Radiol; 2023 Dec; 33(12):8477-8487. PubMed ID: 37389610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Artificial intelligence study on left ventricular function among normal individuals, hypertrophic cardiomyopathy and dilated cardiomyopathy patients using 1.5T cardiac cine MR images obtained by SSFP sequence.
    Guo J; Lu H; Chen Y; Zeng M; Jin H
    Br J Radiol; 2022 May; 95(1133):20201060. PubMed ID: 35084208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ground-truth-free deep learning for artefacts reduction in 2D radial cardiac cine MRI using a synthetically generated dataset.
    Chen D; Schaeffter T; Kolbitsch C; Kofler A
    Phys Med Biol; 2021 Apr; 66(9):. PubMed ID: 33770783
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks.
    Sujit SJ; Coronado I; Kamali A; Narayana PA; Gabr RE
    J Magn Reson Imaging; 2019 Oct; 50(4):1260-1267. PubMed ID: 30811739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of transfer learning in deep convolutional neural network models for cardiac short axis slice classification.
    Ho N; Kim YC
    Sci Rep; 2021 Jan; 11(1):1839. PubMed ID: 33469077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. AI-based digital image dietary assessment methods compared to humans and ground truth: a systematic review.
    Shonkoff E; Cara KC; Pei XA; Chung M; Kamath S; Panetta K; Hennessy E
    Ann Med; 2023; 55(2):2273497. PubMed ID: 38060823
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Training and clinical testing of artificial intelligence derived right atrial cardiovascular magnetic resonance measurements.
    Alandejani F; Alabed S; Garg P; Goh ZM; Karunasaagarar K; Sharkey M; Salehi M; Aldabbagh Z; Dwivedi K; Mamalakis M; Metherall P; Uthoff J; Johns C; Rothman A; Condliffe R; Hameed A; Charalampoplous A; Lu H; Plein S; Greenwood JP; Lawrie A; Wild JM; de Koning PJH; Kiely DG; Van Der Geest R; Swift AJ
    J Cardiovasc Magn Reson; 2022 Apr; 24(1):25. PubMed ID: 35387651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A deep learning pipeline for automatic analysis of multi-scan cardiovascular magnetic resonance.
    Fadil H; Totman JJ; Hausenloy DJ; Ho HH; Joseph P; Low AF; Richards AM; Chan MY; Marchesseau S
    J Cardiovasc Magn Reson; 2021 Apr; 23(1):47. PubMed ID: 33896419
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of Cardiac Short Axis Slice Levels with a Cascaded Deep Convolutional and Recurrent Neural Network Model.
    Ho N; Kim YC
    Tomography; 2022 Nov; 8(6):2749-2760. PubMed ID: 36412688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.