These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 37347159)
1. Dissecting the Arginine and Lysine Biosynthetic Pathways and Their Relationship in Haloarchaeon Natrinema gari J7-2 via Endogenous CRISPR-Cas System-Based Genome Editing. Wu Y; Zhang J; Wang B; Zhang Y; Li H; Liu Y; Yin J; He D; Luo H; Gan F; Tang B; Tang XF Microbiol Spectr; 2023 Aug; 11(4):e0028823. PubMed ID: 37347159 [TBL] [Abstract][Full Text] [Related]
2. The complete genome sequence of Natrinema sp. J7-2, a haloarchaeon capable of growth on synthetic media without amino acid supplements. Feng J; Liu B; Zhang Z; Ren Y; Li Y; Gan F; Huang Y; Chen X; Shen P; Wang L; Tang B; Tang XF PLoS One; 2012; 7(7):e41621. PubMed ID: 22911826 [TBL] [Abstract][Full Text] [Related]
3. A TrmBL2-like transcription factor mediates the growth phase-dependent expression of halolysin SptA in a concentration-dependent manner in Yin J; Liu Y; He D; Li P; Qiao M; Luo H; Qu X; Mei S; Wu Y; Sun Y; Gan F; Tang B; Tang X-F Appl Environ Microbiol; 2024 Jul; 90(7):e0074124. PubMed ID: 38953660 [TBL] [Abstract][Full Text] [Related]
4. HtrAs are essential for the survival of the haloarchaeon Luo H; Qu X; Deng X; He L; Wu Y; Liu Y; He D; Yin J; Wang B; Gan F; Tang B; Tang X-F Appl Environ Microbiol; 2024 Feb; 90(2):e0204823. PubMed ID: 38289131 [TBL] [Abstract][Full Text] [Related]
5. Isolation and Molecular Identification of Auxotrophic Mutants to Develop a Genetic Manipulation System for the Haloarchaeon Natrinema sp. J7-2. Lv J; Wang S; Wang Y; Huang Y; Chen X Archaea; 2015; 2015():483194. PubMed ID: 26089742 [TBL] [Abstract][Full Text] [Related]
6. Lysine and arginine biosyntheses mediated by a common carrier protein in Sulfolobus. Ouchi T; Tomita T; Horie A; Yoshida A; Takahashi K; Nishida H; Lassak K; Taka H; Mineki R; Fujimura T; Kosono S; Nishiyama C; Masui R; Kuramitsu S; Albers SV; Kuzuyama T; Nishiyama M Nat Chem Biol; 2013 Apr; 9(4):277-83. PubMed ID: 23434852 [TBL] [Abstract][Full Text] [Related]
7. Molecular evolution of the lysine biosynthetic pathways. Velasco AM; Leguina JI; Lazcano A J Mol Evol; 2002 Oct; 55(4):445-59. PubMed ID: 12355264 [TBL] [Abstract][Full Text] [Related]
8. Lysine Biosynthesis of Thermococcus kodakarensis with the Capacity to Function as an Ornithine Biosynthetic System. Yoshida A; Tomita T; Atomi H; Kuzuyama T; Nishiyama M J Biol Chem; 2016 Oct; 291(41):21630-21643. PubMed ID: 27566549 [TBL] [Abstract][Full Text] [Related]
9. Construction of Expression Shuttle Vectors for the Haloarchaeon Wang Y; Chen B; Sima L; Cao M; Chen X Archaea; 2017; 2017():4237079. PubMed ID: 28348508 [TBL] [Abstract][Full Text] [Related]
10. Sec-Dependent Secretion of Subtilase SptE in Mei S; Li M; Sun Y; Deng X; Chen N; Liu Y; Yin J; Luo H; Wu Y; He D; Gan F; Tang B; Tang XF Appl Environ Microbiol; 2022 Apr; 88(8):e0024622. PubMed ID: 35348390 [TBL] [Abstract][Full Text] [Related]
11. Functional and evolutionary relationship between arginine biosynthesis and prokaryotic lysine biosynthesis through alpha-aminoadipate. Miyazaki J; Kobashi N; Nishiyama M; Yamane H J Bacteriol; 2001 Sep; 183(17):5067-73. PubMed ID: 11489859 [TBL] [Abstract][Full Text] [Related]
12. Proteomic analysis of the secretome of haloarchaeon Natrinema sp. J7-2. Feng J; Wang J; Zhang Y; Du X; Xu Z; Wu Y; Tang W; Li M; Tang B; Tang XF J Proteome Res; 2014 Mar; 13(3):1248-58. PubMed ID: 24512091 [TBL] [Abstract][Full Text] [Related]
13. Evolution of lysine biosynthesis in the phylum deinococcus-thermus. Nishida H; Nishiyama M Int J Evol Biol; 2012; 2012():745931. PubMed ID: 22645699 [TBL] [Abstract][Full Text] [Related]
14. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon. Cheng F; Gong L; Zhao D; Yang H; Zhou J; Li M; Xiang H J Genet Genomics; 2017 Nov; 44(11):541-548. PubMed ID: 29169919 [TBL] [Abstract][Full Text] [Related]
15. The primordial metabolism: an ancestral interconnection between leucine, arginine, and lysine biosynthesis. Fondi M; Brilli M; Emiliani G; Paffetti D; Fani R BMC Evol Biol; 2007 Aug; 7 Suppl 2(Suppl 2):S3. PubMed ID: 17767731 [TBL] [Abstract][Full Text] [Related]
16. Surprising arginine biosynthesis: a reappraisal of the enzymology and evolution of the pathway in microorganisms. Xu Y; Labedan B; Glansdorff N Microbiol Mol Biol Rev; 2007 Mar; 71(1):36-47. PubMed ID: 17347518 [TBL] [Abstract][Full Text] [Related]
17. Halolysin SptA, a Serine Protease, Contributes to Growth-Phase Transition of Haloarchaeon Li M; Yin J; Mei S; Wang X; Tang XF; Tang B Front Microbiol; 2018; 9():1799. PubMed ID: 30123209 [TBL] [Abstract][Full Text] [Related]
18. Evaluating the annotation of protein-coding genes in bacterial genomes: Chloroflexus aurantiacus strain J-10-fl and Natrinema sp J7-2 as case studies. Zhang HX; Li SJ; Zhou HQ Genet Mol Res; 2014 Dec; 13(4):10891-7. PubMed ID: 25526209 [TBL] [Abstract][Full Text] [Related]
19. Predicted highly derived class 1 CRISPR-Cas system in Haloarchaea containing diverged Cas5 and Cas7 homologs but no CRISPR array. Makarova KS; Karamycheva S; Shah SA; Vestergaard G; Garrett RA; Koonin EV FEMS Microbiol Lett; 2019 Apr; 366(7):. PubMed ID: 30993331 [TBL] [Abstract][Full Text] [Related]
20. The dual biosynthetic capability of N-acetylornithine aminotransferase in arginine and lysine biosynthesis. Ledwidge R; Blanchard JS Biochemistry; 1999 Mar; 38(10):3019-24. PubMed ID: 10074354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]