These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 37347192)
1. Identification and Preliminary Characterization of Novel Type III Secreted Effector Proteins in Chlamydia trachomatis. McCaslin PN; Andersen SE; Icardi CM; Faris R; Steiert B; Smith P; Haider J; Weber MM Infect Immun; 2023 Jul; 91(7):e0049122. PubMed ID: 37347192 [TBL] [Abstract][Full Text] [Related]
2. Identification of homologs of the Chlamydia trachomatis effector CteG reveals a family of Chlamydiaceae type III secreted proteins that can be delivered into host cells. Pereira IS; da Cunha M; Leal IP; Luís MP; Gonçalves P; Gonçalves C; Mota LJ Med Microbiol Immunol; 2024 Jul; 213(1):15. PubMed ID: 39008129 [TBL] [Abstract][Full Text] [Related]
3. Expression and targeting of secreted proteins from Chlamydia trachomatis. Bauler LD; Hackstadt T J Bacteriol; 2014 Apr; 196(7):1325-34. PubMed ID: 24443531 [TBL] [Abstract][Full Text] [Related]
4. Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis. Weber MM; Bauler LD; Lam J; Hackstadt T Infect Immun; 2015 Dec; 83(12):4710-8. PubMed ID: 26416906 [TBL] [Abstract][Full Text] [Related]
5. Application of β-lactamase reporter fusions as an indicator of effector protein secretion during infections with the obligate intracellular pathogen Chlamydia trachomatis. Mueller KE; Fields KA PLoS One; 2015; 10(8):e0135295. PubMed ID: 26258949 [TBL] [Abstract][Full Text] [Related]
6. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Fields KA; Hackstadt T Mol Microbiol; 2000 Dec; 38(5):1048-60. PubMed ID: 11123678 [TBL] [Abstract][Full Text] [Related]
7. Chlamydia trachomatis TmeA Directly Activates N-WASP To Promote Actin Polymerization and Functions Synergistically with TarP during Invasion. Keb G; Ferrell J; Scanlon KR; Jewett TJ; Fields KA mBio; 2021 Jan; 12(1):. PubMed ID: 33468693 [No Abstract] [Full Text] [Related]
8. The Loss of Expression of a Single Type 3 Effector (CT622) Strongly Reduces Cossé MM; Barta ML; Fisher DJ; Oesterlin LK; Niragire B; Perrinet S; Millot GA; Hefty PS; Subtil A Front Cell Infect Microbiol; 2018; 8():145. PubMed ID: 29868501 [TBL] [Abstract][Full Text] [Related]
9. Identification of type III secretion substrates of Chlamydia trachomatis using Yersinia enterocolitica as a heterologous system. da Cunha M; Milho C; Almeida F; Pais SV; Borges V; Maurício R; Borrego MJ; Gomes JP; Mota LJ BMC Microbiol; 2014 Feb; 14():40. PubMed ID: 24533538 [TBL] [Abstract][Full Text] [Related]
10. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane. Olson MG; Ouellette SP; Rucks EA J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040 [TBL] [Abstract][Full Text] [Related]
11. Identification of novel type III secretion chaperone-substrate complexes of Chlamydia trachomatis. Pais SV; Milho C; Almeida F; Mota LJ PLoS One; 2013; 8(2):e56292. PubMed ID: 23431368 [TBL] [Abstract][Full Text] [Related]
12. Context-Dependent Action of Scc4 Reinforces Control of the Type III Secretion System. Gao L; Cong Y; Plano GV; Rao X; Gisclair LN; Schesser Bartra S; Macnaughtan MA; Shen L J Bacteriol; 2020 Jul; 202(15):. PubMed ID: 32424009 [No Abstract] [Full Text] [Related]
13. Targeted Disruption of Chlamydia trachomatis Invasion by in Trans Expression of Dominant Negative Tarp Effectors. Parrett CJ; Lenoci RV; Nguyen B; Russell L; Jewett TJ Front Cell Infect Microbiol; 2016; 6():84. PubMed ID: 27602332 [TBL] [Abstract][Full Text] [Related]
14. The Herrera CM; McMahon E; Swaney DL; Sherry J; Pha K; Adams-Boone K; Johnson JR; Krogan NJ; Stevers M; Solomon D; Elwell C; Engel J Microbiol Spectr; 2024 Jul; 12(7):e0045324. PubMed ID: 38814079 [No Abstract] [Full Text] [Related]
15. Chlamydia trachomatis Slc1 is a type III secretion chaperone that enhances the translocation of its invasion effector substrate TARP. Brinkworth AJ; Malcolm DS; Pedrosa AT; Roguska K; Shahbazian S; Graham JE; Hayward RD; Carabeo RA Mol Microbiol; 2011 Oct; 82(1):131-44. PubMed ID: 21883523 [TBL] [Abstract][Full Text] [Related]
16. The Salmonella enterica serovar typhimurium-encoded type III secretion systems can translocate Chlamydia trachomatis proteins into the cytosol of host cells. Ho TD; Starnbach MN Infect Immun; 2005 Feb; 73(2):905-11. PubMed ID: 15664932 [TBL] [Abstract][Full Text] [Related]
17. Application of a Yanatori I; Miura K; Chen YS; Valdivia RH; Kishi F J Bacteriol; 2021 Jun; 203(11):. PubMed ID: 33685970 [No Abstract] [Full Text] [Related]
18. Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development. Fields KA; Mead DJ; Dooley CA; Hackstadt T Mol Microbiol; 2003 May; 48(3):671-83. PubMed ID: 12694613 [TBL] [Abstract][Full Text] [Related]
19. Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development. Hower S; Wolf K; Fields KA Mol Microbiol; 2009 Jun; 72(6):1423-37. PubMed ID: 19460098 [TBL] [Abstract][Full Text] [Related]
20. The Chlamydia trachomatis type III secretion chaperone Slc1 engages multiple early effectors, including TepP, a tyrosine-phosphorylated protein required for the recruitment of CrkI-II to nascent inclusions and innate immune signaling. Chen YS; Bastidas RJ; Saka HA; Carpenter VK; Richards KL; Plano GV; Valdivia RH PLoS Pathog; 2014 Feb; 10(2):e1003954. PubMed ID: 24586162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]