These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37347280)

  • 1. Data-driven adaptive GM(1,1) time series prediction model for thermal comfort.
    Li X; Xu C; Wang K; Yang X; Li Y
    Int J Biometeorol; 2023 Aug; 67(8):1335-1344. PubMed ID: 37347280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Physiological-Signal-Based Thermal Sensation Model for Indoor Environment Thermal Comfort Evaluation.
    Pao SL; Wu SY; Liang JM; Huang IJ; Guo LY; Wu WL; Liu YG; Nian SH
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Evaluation of thermal environment and human thermal comfort in 8 types of public places from 2019 to 2021].
    Zhu JY; Zhang X; Huang CH; Wang L; Chen R; Ding XL
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2023 Mar; 41(3):189-197. PubMed ID: 37006144
    [No Abstract]   [Full Text] [Related]  

  • 4. Uncertainty in the evaluation of the Predicted Mean Vote index using Monte Carlo analysis.
    Ricciu R; Galatioto A; Desogus G; Besalduch LA
    J Environ Manage; 2018 Oct; 223():16-22. PubMed ID: 29885560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forty years of Fanger's model of thermal comfort: comfort for all?
    van Hoof J
    Indoor Air; 2008 Jun; 18(3):182-201. PubMed ID: 18363685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification and verification of the PMV model to improve thermal comfort prediction at low pressure.
    Zhou B; Huang Y; Nie J; Ding L; Sun C; Chen B
    J Therm Biol; 2023 Oct; 117():103722. PubMed ID: 37832334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A correlation linking the predicted mean vote and the mean thermal vote based on an investigation on the human thermal comfort in short-haul domestic flights.
    Giaconia C; Orioli A; Di Gangi A
    Appl Ergon; 2015 May; 48():202-13. PubMed ID: 25683547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal sensations and comfort investigations in transient conditions in tropical office.
    Dahlan ND; Gital YY
    Appl Ergon; 2016 May; 54():169-76. PubMed ID: 26851476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entropy generation method to quantify thermal comfort.
    Boregowda SC; Tiwari SN; Chaturvedi SK
    Hum Perf Extrem Environ; 2001 Dec; 6(1):40-5. PubMed ID: 12182196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examination of thermal comfort in a hospital using PMV-PPD model.
    Pourshaghaghy A; Omidvari M
    Appl Ergon; 2012 Nov; 43(6):1089-95. PubMed ID: 22575492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong.
    Cheng V; Ng E; Chan C; Givoni B
    Int J Biometeorol; 2012 Jan; 56(1):43-56. PubMed ID: 21197549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application of PMV and PPD indices to predict how Metro passengers evaluate the grade of thermal comfort or discomfort in different temperature conditions].
    Leskin AG; Evlampieva MN; Mineeva NI; Timoshenkova EV
    Gig Sanit; 2014; (3):45-8. PubMed ID: 25306700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive-rational thermal comfort model: Adaptive predicted mean vote with variable adaptive coefficient.
    Zhang S; Lin Z
    Indoor Air; 2020 Sep; 30(5):1052-1062. PubMed ID: 32155288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended predicted mean vote of thermal adaptations reinforced around thermal neutrality.
    Zhang S; Lin Z
    Indoor Air; 2021 Jul; 31(4):1227. PubMed ID: 33463779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Appraisal of thermal comfort in rural household kitchens of Punjab, India and adaptation strategies for better health.
    Ravindra K; Agarwal N; Kaur-Sidhu M; Mor S
    Environ Int; 2019 Mar; 124():431-440. PubMed ID: 30684801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fuzzy Logic Controlled Simulation in Regulating Thermal Comfort and Indoor Air Quality Using a Vehicle Heating, Ventilation, and Air-Conditioning System.
    Rajeswari Subramaniam K; Cheng CT; Pang TY
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the determination of the thermal comfort conditions of a metropolitan city underground railway.
    Katavoutas G; Assimakopoulos MN; Asimakopoulos DN
    Sci Total Environ; 2016 Oct; 566-567():877-887. PubMed ID: 27280378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of Human Thermal Comfort for Cyber-Physical Human Centric System in Smart Homes.
    Fang Y; Lim Y; Ooi SE; Zhou C; Tan Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden.
    Thorsson S; Lindqvist M; Lindqvist S
    Int J Biometeorol; 2004 Feb; 48(3):149-56. PubMed ID: 12955614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The perceived temperature - a versatile index for the assessment of the human thermal environment. Part A: scientific basics.
    Staiger H; Laschewski G; Grätz A
    Int J Biometeorol; 2012 Jan; 56(1):165-76. PubMed ID: 21336880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.