These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37347280)

  • 41. Machine learning and features for the prediction of thermal sensation and comfort using data from field surveys in Cyprus.
    Pantavou K; Delibasis KK; Nikolopoulos GK
    Int J Biometeorol; 2022 Oct; 66(10):1973-1984. PubMed ID: 35895145
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enabling Smart Air Conditioning by Sensor Development: A Review.
    Cheng CC; Lee D
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27916906
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microclimate and animal thermal comfort indexes in different silvopastoral system arrangements in Caatinga.
    Dos Santos Neto CF; da Silva RG; Maranhão SR; Torres AFF; Barbosa Filho JAD; Macedo VHM; Cândido MJD
    Int J Biometeorol; 2022 Mar; 66(3):449-456. PubMed ID: 35064319
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic thermal environment and thermal comfort.
    Zhu Y; Ouyang Q; Cao B; Zhou X; Yu J
    Indoor Air; 2016 Feb; 26(1):125-37. PubMed ID: 26171688
    [TBL] [Abstract][Full Text] [Related]  

  • 45. BIM and Data-Driven Predictive Analysis of Optimum Thermal Comfort for Indoor Environment.
    Gan VJL; Luo H; Tan Y; Deng M; Kwok HL
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34199042
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A field study on thermal comfort in an Italian hospital considering differences in gender and age.
    Del Ferraro S; Iavicoli S; Russo S; Molinaro V
    Appl Ergon; 2015 Sep; 50():177-84. PubMed ID: 25959333
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of Light Powered Sensor Networks for Thermal Comfort Measurement.
    Lee D
    Sensors (Basel); 2008 Oct; 8(10):6417-6432. PubMed ID: 27873877
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies.
    Krüger EL; Minella FO; Matzarakis A
    Int J Biometeorol; 2014 Oct; 58(8):1727-37. PubMed ID: 24375056
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermal environment assessment reliability using temperature--humidity indices.
    d'Ambrosio Alfano FR; Palella BI; Riccio G
    Ind Health; 2011; 49(1):95-106. PubMed ID: 20823629
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermal comfort study of hospital workers in Malaysia.
    Yau YH; Chew BT
    Indoor Air; 2009 Dec; 19(6):500-10. PubMed ID: 19719535
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of personal protective equipment on thermal stress: An experimental study on firefighters.
    Ghiyasi S; Nabizadeh H; Jazari MD; Soltanzadeh A; Heidari H; Fardi A; Movahed E
    Work; 2020; 67(1):141-147. PubMed ID: 32955479
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Relationship among environmental quality variables, housing variables, and residential needs: a secondary analysis of the relationship among indoor, outdoor, and personal air (RIOPA) concentrations database.
    Garcia F; Shendell DG; Madrigano J
    Int J Biometeorol; 2017 Mar; 61(3):513-525. PubMed ID: 27572236
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of microclimate measurements and perceptions as part of a global evaluation of environmental quality at neighbourhood scale.
    Lemonsu A; Amossé A; Chouillou D; Gaudio N; Haouès-Jouve S; Hidalgo J; Le Bras J; Legain D; Marchandise S; Tudoux B
    Int J Biometeorol; 2020 Feb; 64(2):265-276. PubMed ID: 30783761
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [The evaluation of the thermal environment of man (author's transl)].
    Sönning W; Jendritzky G
    Zentralbl Bakteriol B; 1979 Oct; 169(3-4):391-7. PubMed ID: 543363
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineered bioclimatic responses in ancient settlements: a case study.
    Ghosh S; Bharadwaj SJ; Bharadwaj SJ; Gumber S
    Int J Biometeorol; 2021 Nov; 65(11):1967-1982. PubMed ID: 34050435
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experimental study on dynamic thermal environment of passenger compartment based on thermal evaluation indexes.
    Zhang L; Qi L; Liu J; Wu Q
    Sci Prog; 2020; 103(3):36850420942991. PubMed ID: 32787693
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessment of indoor thermal comfort temperature and related behavioural adaptations: a systematic review.
    Arsad FS; Hod R; Ahmad N; Baharom M; Ja'afar MH
    Environ Sci Pollut Res Int; 2023 Jun; 30(29):73137-73149. PubMed ID: 37211568
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city.
    Provençal S; Bergeron O; Leduc R; Barrette N
    Int J Biometeorol; 2016 Apr; 60(4):591-603. PubMed ID: 26349476
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermal sensation prediction by soft computing methodology.
    Jović S; Arsić N; Vilimonović J; Petković D
    J Therm Biol; 2016 Dec; 62(Pt B):106-108. PubMed ID: 27888922
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Research on the influence of indoor thermal environment and activity levels on thermal comfort in protective clothing.
    Yao W; Li X; Cao W; Li G; Ren L; Gao W
    Energy Build; 2023 Jan; 279():112681. PubMed ID: 36438077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.