These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 37347293)
1. Remote sensing-based monitoring and evaluation of the basin-wise dynamics of terrestrial water and groundwater storage fluctuations. Khorrami B; Gündüz O Environ Monit Assess; 2023 Jun; 195(7):868. PubMed ID: 37347293 [TBL] [Abstract][Full Text] [Related]
2. Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations. Chen H; Zhang W; Nie N; Guo Y Sci Total Environ; 2019 Feb; 649():372-387. PubMed ID: 30176450 [TBL] [Abstract][Full Text] [Related]
3. Enhancing spatial resolution of GRACE-derived groundwater storage anomalies in Urmia catchment using machine learning downscaling methods. Sabzehee F; Amiri-Simkooei AR; Iran-Pour S; Vishwakarma BD; Kerachian R J Environ Manage; 2023 Mar; 330():117180. PubMed ID: 36603260 [TBL] [Abstract][Full Text] [Related]
4. Impacts of Human Activities and Climate Change on Water Storage Changes in Shandong Province, China. Deng L; Han Z; Pu W; Bao R; Wang Z; Wu Q; Qiao J Environ Sci Pollut Res Int; 2022 May; 29(23):35365-35381. PubMed ID: 35060057 [TBL] [Abstract][Full Text] [Related]
5. Satellite-based estimates of groundwater storage depletion over Egypt. Shalby A; Emara SR; Metwally MI; Armanuos AM; El-Agha DE; Negm AM; Gado TA Environ Monit Assess; 2023 Apr; 195(5):594. PubMed ID: 37079099 [TBL] [Abstract][Full Text] [Related]
6. Combining downscaled-GRACE data with SWAT to improve the estimation of groundwater storage and depletion variations in the Irrigated Indus Basin (IIB). Arshad A; Mirchi A; Samimi M; Ahmad B Sci Total Environ; 2022 Sep; 838(Pt 2):156044. PubMed ID: 35598670 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of Terrestrial Water Storage Changes and Major Driving Factors Analysis in Inner Mongolia, China. Guo Y; Gan F; Yan B; Bai J; Xing N; Zhuo Y Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560032 [TBL] [Abstract][Full Text] [Related]
8. Integrating satellite observations and human water use data to estimate changes in key components of terrestrial water storage in a semi-arid region of North China. Sun W; Jin Y; Yu J; Wang G; Xue B; Zhao Y; Fu Y; Shrestha S Sci Total Environ; 2020 Jan; 698():134171. PubMed ID: 31514033 [TBL] [Abstract][Full Text] [Related]
9. Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools. Iqbal N; Hossain F; Lee H; Akhter G Environ Monit Assess; 2017 Mar; 189(3):128. PubMed ID: 28243930 [TBL] [Abstract][Full Text] [Related]
10. Overview of terrestrial water storage changes over the Indus River Basin based on GRACE/GRACE-FO solutions. Zhu Y; Liu S; Yi Y; Xie F; Grünwald R; Miao W; Wu K; Qi M; Gao Y; Singh D Sci Total Environ; 2021 Dec; 799():149366. PubMed ID: 34352463 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the hydro-geological regime of Yangtze River basin using remotely-sensed and modeled products. Ferreira VG; Yong B; Tourian MJ; Ndehedehe CE; Shen Z; Seitz K; Dannouf R Sci Total Environ; 2020 May; 718():137354. PubMed ID: 32325611 [TBL] [Abstract][Full Text] [Related]
12. Increased Water Storage in the Qaidam Basin, the North Tibet Plateau from GRACE Gravity Data. Jiao JJ; Zhang X; Liu Y; Kuang X PLoS One; 2015; 10(10):e0141442. PubMed ID: 26506230 [TBL] [Abstract][Full Text] [Related]
13. Evaluating the Hydrological Components Contributions to Terrestrial Water Storage Changes in Inner Mongolia with Multiple Datasets. Guo Y; Xing N; Gan F; Yan B; Bai J Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514746 [TBL] [Abstract][Full Text] [Related]
14. The application of multi-mission satellite data assimilation for studying water storage changes over South America. Khaki M; Awange J Sci Total Environ; 2019 Jan; 647():1557-1572. PubMed ID: 30180360 [TBL] [Abstract][Full Text] [Related]
15. Joint Inversion of GNSS and GRACE for Terrestrial Water Storage Change in California. Carlson G; Werth S; Shirzaei M J Geophys Res Solid Earth; 2022 Mar; 127(3):e2021JB023135. PubMed ID: 35866034 [TBL] [Abstract][Full Text] [Related]
16. Reconstruction of GRACE terrestrial water storage anomalies using Multi-Layer Perceptrons for South Indian River basins. Satish Kumar K; AnandRaj P; Sreelatha K; Sridhar V Sci Total Environ; 2023 Jan; 857(Pt 2):159289. PubMed ID: 36209880 [TBL] [Abstract][Full Text] [Related]
17. Spatio-Temporal Variations in Groundwater Revealed by GRACE and Its Driving Factors in the Huang-Huai-Hai Plain, China. Su Y; Guo B; Zhou Z; Zhong Y; Min L Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050517 [TBL] [Abstract][Full Text] [Related]
18. Divergent spatiotemporal variability of terrestrial water storage and eight hydroclimatic components over three different scales of the Yangtze River basin. Chao N; Li F; Yu N; Chen G; Wang Z; Ouyang G; Yeh PJ Sci Total Environ; 2023 Jun; 879():162886. PubMed ID: 36933709 [TBL] [Abstract][Full Text] [Related]
19. Terrestrial Water Storage in African Hydrological Regimes Derived from GRACE Mission Data: Intercomparison of Spherical Harmonics, Mass Concentration, and Scalar Slepian Methods. Rateb A; Kuo CY; Imani M; Tseng KH; Lan WH; Ching KE; Tseng TP Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28287453 [TBL] [Abstract][Full Text] [Related]
20. Benefits and Pitfalls of GRACE Data Assimilation: a Case Study of Terrestrial Water Storage Depletion in India. Girotto M; De Lannoy GJM; Reichle RH; Rodell M; Draper C; Bhanja SN; Mukherjee A Geophys Res Lett; 2017 May; 44(9):4107-4115. PubMed ID: 29643570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]