BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37347641)

  • 1. Effect of temporal resolution on the reproduction of chaotic dynamics via reservoir computing.
    Tsuchiyama K; Röhm A; Mihana T; Horisaki R; Naruse M
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37347641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilizing machine learning prediction of dynamics: Novel noise-inspired regularization tested with reservoir computing.
    Wikner A; Harvey J; Girvan M; Hunt BR; Pomerance A; Antonsen T; Ott E
    Neural Netw; 2024 Feb; 170():94-110. PubMed ID: 37977092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive balancing of exploration and exploitation around the edge of chaos in internal-chaos-based learning.
    Matsuki T; Shibata K
    Neural Netw; 2020 Dec; 132():19-29. PubMed ID: 32861145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of chaotic time series using recurrent neural networks and reservoir computing techniques: A comparative study.
    Shahi S; Fenton FH; Cherry EM
    Mach Learn Appl; 2022 Jun; 8():. PubMed ID: 35755176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctionality in a reservoir computer.
    Flynn A; Tsachouridis VA; Amann A
    Chaos; 2021 Jan; 31(1):013125. PubMed ID: 33754772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics.
    Vlachas PR; Pathak J; Hunt BR; Sapsis TP; Girvan M; Ott E; Koumoutsakos P
    Neural Netw; 2020 Jun; 126():191-217. PubMed ID: 32248008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-free inference of unseen attractors: Reconstructing phase space features from a single noisy trajectory using reservoir computing.
    Röhm A; Gauthier DJ; Fischer I
    Chaos; 2021 Oct; 31(10):103127. PubMed ID: 34717323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in physical reservoir computing: A review.
    Tanaka G; Yamane T; Héroux JB; Nakane R; Kanazawa N; Takeda S; Numata H; Nakano D; Hirose A
    Neural Netw; 2019 Jul; 115():100-123. PubMed ID: 30981085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning unseen coexisting attractors.
    Gauthier DJ; Fischer I; Röhm A
    Chaos; 2022 Nov; 32(11):113107. PubMed ID: 36456323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delay-based reservoir computing: noise effects in a combined analog and digital implementation.
    Soriano MC; Ortín S; Keuninckx L; Appeltant L; Danckaert J; Pesquera L; van der Sande G
    IEEE Trans Neural Netw Learn Syst; 2015 Feb; 26(2):388-93. PubMed ID: 25608295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust Optimization and Validation of Echo State Networks for learning chaotic dynamics.
    Racca A; Magri L
    Neural Netw; 2021 Oct; 142():252-268. PubMed ID: 34034072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short- and long-term predictions of chaotic flows and extreme events: a physics-constrained reservoir computing approach.
    Doan NAK; Polifke W; Magri L
    Proc Math Phys Eng Sci; 2021 Sep; 477(2253):20210135. PubMed ID: 35153579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data.
    Pathak J; Lu Z; Hunt BR; Girvan M; Ott E
    Chaos; 2017 Dec; 27(12):121102. PubMed ID: 29289043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel Machine Learning for Forecasting the Dynamics of Complex Networks.
    Srinivasan K; Coble N; Hamlin J; Antonsen T; Ott E; Girvan M
    Phys Rev Lett; 2022 Apr; 128(16):164101. PubMed ID: 35522516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer-RLS method and transfer-FORCE learning for simple and fast training of reservoir computing models.
    Tamura H; Tanaka G
    Neural Netw; 2021 Nov; 143():550-563. PubMed ID: 34304003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting chaotic dynamics from incomplete input via reservoir computing with (D+1)-dimension input and output.
    Shi L; Yan Y; Wang H; Wang S; Qu SX
    Phys Rev E; 2023 May; 107(5-1):054209. PubMed ID: 37329034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronization and cryptography.
    Antonik P; Gulina M; Pauwels J; Massar S
    Phys Rev E; 2018 Jul; 98(1-1):012215. PubMed ID: 30110744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting phase and sensing phase coherence in chaotic systems with machine learning.
    Zhang C; Jiang J; Qu SX; Lai YC
    Chaos; 2020 Aug; 30(8):083114. PubMed ID: 32872815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the dynamical behaviors for chaotic semiconductor lasers by reservoir computing.
    Li XZ; Sheng B; Zhang M
    Opt Lett; 2022 Jun; 47(11):2822-2825. PubMed ID: 35648939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forecasting macroscopic dynamics in adaptive Kuramoto network using reservoir computing.
    Andreev AV; Badarin AA; Maximenko VA; Hramov AE
    Chaos; 2022 Oct; 32(10):103126. PubMed ID: 36319291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.