These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Neural network-enhanced real-time impedance flow cytometry for single-cell intrinsic characterization. Feng Y; Cheng Z; Chai H; He W; Huang L; Wang W Lab Chip; 2022 Jan; 22(2):240-249. PubMed ID: 34849522 [TBL] [Abstract][Full Text] [Related]
7. Submicron-precision particle characterization in microfluidic impedance cytometry with double differential electrodes. Zhong J; Liang M; Ai Y Lab Chip; 2021 Aug; 21(15):2869-2880. PubMed ID: 34236057 [TBL] [Abstract][Full Text] [Related]
8. Recent Advances in Electrical Impedance Sensing Technology for Single-Cell Analysis. Zhang Z; Huang X; Liu K; Lan T; Wang Z; Zhu Z Biosensors (Basel); 2021 Nov; 11(11):. PubMed ID: 34821686 [TBL] [Abstract][Full Text] [Related]
9. Determining Particle Size and Position in a Coplanar Electrode Setup Using Measured Opacity for Microfluidic Cytometry. de Bruijn DS; Jorissen KFA; Olthuis W; van den Berg A Biosensors (Basel); 2021 Sep; 11(10):. PubMed ID: 34677309 [TBL] [Abstract][Full Text] [Related]
10. Floating-Electrode-Enabled Impedance Cytometry for Single-Cell 3D Localization. Fang Q; Feng Y; Zhu J; Huang L; Wang W Anal Chem; 2023 Apr; 95(15):6374-6382. PubMed ID: 36996369 [TBL] [Abstract][Full Text] [Related]
11. Concepts, electrode configuration, characterization, and data analytics of electric and electrochemical microfluidic platforms: a review. Nguyen TH; Nguyen HA; Tran Thi YV; Hoang Tran D; Cao H; Chu Duc T; Bui TT; Do Quang L Analyst; 2023 May; 148(9):1912-1929. PubMed ID: 36928639 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles. Yang D; Ai Y Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354 [TBL] [Abstract][Full Text] [Related]
14. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations. Zhu S; Zhang X; Zhou Z; Han Y; Xiang N; Ni Z Talanta; 2021 Oct; 233():122571. PubMed ID: 34215067 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic Impedance Cytometry Enabled One-Step Sample Preparation for Efficient Single-Cell Mass Spectrometry. Zhu J; Pan S; Chai H; Zhao P; Feng Y; Cheng Z; Zhang S; Wang W Small; 2024 Jun; 20(26):e2310700. PubMed ID: 38483007 [TBL] [Abstract][Full Text] [Related]
16. Deciphering impedance cytometry signals with neural networks. Caselli F; Reale R; De Ninno A; Spencer D; Morgan H; Bisegna P Lab Chip; 2022 May; 22(9):1714-1722. PubMed ID: 35353108 [TBL] [Abstract][Full Text] [Related]
17. Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: origin, challenges and opportunities. Daguerre H; Solsona M; Cottet J; Gauthier M; Renaud P; Bolopion A Lab Chip; 2020 Oct; 20(20):3665-3689. PubMed ID: 32914827 [TBL] [Abstract][Full Text] [Related]
18. An impedance flow cytometry with integrated dual microneedle for electrical properties characterization of single cell. Mansor MA; Ahmad MR; Petrů M; Rahimian Koloor SS Artif Cells Nanomed Biotechnol; 2023 Dec; 51(1):371-383. PubMed ID: 37548425 [TBL] [Abstract][Full Text] [Related]
19. Viability and membrane potential analysis of Bacillus megaterium cells by impedance flow cytometry. David F; Hebeisen M; Schade G; Franco-Lara E; Di Berardino M Biotechnol Bioeng; 2012 Feb; 109(2):483-92. PubMed ID: 21956238 [TBL] [Abstract][Full Text] [Related]
20. Numerical Investigation of a Novel Wiring Scheme Enabling Simple and Accurate Impedance Cytometry. Caselli F; Reale R; Nodargi NA; Bisegna P Micromachines (Basel); 2017 Sep; 8(9):. PubMed ID: 30400471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]