These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 37348224)
101. Development of a Data-Independent Targeted Metabolomics Method for Relative Quantification Using Liquid Chromatography Coupled with Tandem Mass Spectrometry. Chen Y; Zhou Z; Yang W; Bi N; Xu J; He J; Zhang R; Wang L; Abliz Z Anal Chem; 2017 Jul; 89(13):6954-6962. PubMed ID: 28574715 [TBL] [Abstract][Full Text] [Related]
102. Characterization of global metabolic profile of Zhi-Zi-Hou-Po decoction in rat bile, urine and feces after oral administration based on a strategy combining LC-MS and chemometrics. Luo K; Shi Q; Feng F J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jan; 1040():260-272. PubMed ID: 27838179 [TBL] [Abstract][Full Text] [Related]
103. A supervised machine-learning approach for the efficient development of a multi method (LC-MS) for a large number of drugs and subsets thereof: focus on oral antitumor agents. Kehl N; Gessner A; Maas R; Fromm MF; Taudte RV Clin Chem Lab Med; 2024 Jan; 62(2):293-302. PubMed ID: 37606251 [TBL] [Abstract][Full Text] [Related]
104. Predicting retention time in hydrophilic interaction liquid chromatography mass spectrometry and its use for peak annotation in metabolomics. Cao M; Fraser K; Huege J; Featonby T; Rasmussen S; Jones C Metabolomics; 2015; 11(3):696-706. PubMed ID: 25972771 [TBL] [Abstract][Full Text] [Related]
105. RT-Ensemble Pred: A tool for retention time prediction of metabolites on different LC-MS systems. Chen B; Wang C; Fu Z; Yu H; Liu E; Gao X; Li J; Han L J Chromatogr A; 2023 Sep; 1707():464304. PubMed ID: 37611386 [TBL] [Abstract][Full Text] [Related]
106. Improved quantification of carbonyl sub-metabolome by liquid chromatography mass spectrometry using a fragment controlled multiplexed isotopic tag. Tian X; Hopfgartner G Anal Chim Acta; 2024 Jan; 1287():342117. PubMed ID: 38182390 [TBL] [Abstract][Full Text] [Related]
107. Novel Strategy for Human Deep Vein Thrombosis Diagnosis Based on Metabolomics and Stacking Machine Learning. Cao J; An GS; Li RQ; Hou ZJ; Li J; Jin QQ; Du QX; Sun JH Anal Chem; 2024 Sep; 96(36):14560-14570. PubMed ID: 39197159 [TBL] [Abstract][Full Text] [Related]
108. Stable Isotope Labeling-Based Nontargeted Strategy for Characterization of the In Vitro Metabolic Profile of a Novel Doping BPC-157 in Doping Control by UHPLC-HRMS. Tian T; Jing J; Li Y; Wang Y; Deng X; Shan Y Molecules; 2023 Oct; 28(21):. PubMed ID: 37959764 [TBL] [Abstract][Full Text] [Related]
109. High tolerance to instrument drifts by differential chemical isotope labeling LC-MS: A case study of the effect of LC leak in long-term sample runs on quantitative metabolome analysis. Chen D; Zhao S; Han W; Lo E; Su X; Li L; Li L J Mass Spectrom; 2020 Jun; 56(4):e4589. PubMed ID: 32639693 [TBL] [Abstract][Full Text] [Related]
110. RT-Transformer: retention time prediction for metabolite annotation to assist in metabolite identification. Xue J; Wang B; Ji H; Li W Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38402516 [TBL] [Abstract][Full Text] [Related]
111. Enhancing compound confidence in suspect and non-target screening through machine learning-based retention time prediction. Song D; Tang T; Wang R; Liu H; Xie D; Zhao B; Dang Z; Lu G Environ Pollut; 2024 Apr; 347():123763. PubMed ID: 38492749 [TBL] [Abstract][Full Text] [Related]
112. Insights into predicting small molecule retention times in liquid chromatography using deep learning. Liu Y; Yoshizawa AC; Ling Y; Okuda S J Cheminform; 2024 Oct; 16(1):113. PubMed ID: 39375739 [TBL] [Abstract][Full Text] [Related]
113. Structure Based Machine Learning Prediction of Retention Times for LC Method Development of Pharmaceuticals. Fine J; Mann AKP; Aggarwal P Pharm Res; 2024 Feb; 41(2):365-374. PubMed ID: 38332389 [TBL] [Abstract][Full Text] [Related]
114. Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds. Low DY; Micheau P; Koistinen VM; Hanhineva K; Abrankó L; Rodriguez-Mateos A; da Silva AB; van Poucke C; Almeida C; Andres-Lacueva C; Rai DK; Capanoglu E; Tomás Barberán FA; Mattivi F; Schmidt G; Gürdeniz G; Valentová K; Bresciani L; Petrásková L; Dragsted LO; Philo M; Ulaszewska M; Mena P; González-Domínguez R; Garcia-Villalba R; Kamiloglu S; de Pascual-Teresa S; Durand S; Wiczkowski W; Bronze MR; Stanstrup J; Manach C Food Chem; 2021 Apr; 357():129757. PubMed ID: 33872868 [TBL] [Abstract][Full Text] [Related]
115. GlycanGUI: Automated Glycan Annotation and Quantification Using Glucose Unit Index. Zhang R; Peng W; Gautam S; Huang Y; Mechref Y; Tang H Front Chem; 2021; 9():707382. PubMed ID: 34211962 [TBL] [Abstract][Full Text] [Related]
116. Deep learning prediction of electrospray ionization tandem mass spectra of chemically derived molecules. Chen B; Li H; Huang R; Tang Y; Li F Nat Commun; 2024 Sep; 15(1):8396. PubMed ID: 39333165 [TBL] [Abstract][Full Text] [Related]