These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37348281)

  • 21. Whole-body tumor segmentation from PET/CT images using a two-stage cascaded neural network with camouflaged object detection mechanisms.
    He J; Zhang Y; Chung M; Wang M; Wang K; Ma Y; Ding X; Li Q; Pu Y
    Med Phys; 2023 Oct; 50(10):6151-6162. PubMed ID: 37134002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated stroke lesion segmentation in non-contrast CT scans using dense multi-path contextual generative adversarial network.
    Kuang H; Menon BK; Qiu W
    Phys Med Biol; 2020 Nov; 65(21):215013. PubMed ID: 32604080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overcoming the Challenge of Accurate Segmentation of Lung Nodules: A Multi-crop CNN Approach.
    Sweetline BC; Vijayakumaran C; Samydurai A
    J Imaging Inform Med; 2024 Jun; 37(3):988-1007. PubMed ID: 38347393
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lung Lesion Detection in CT Scan Images Using the Fuzzy Local Information Cluster Means (FLICM) Automatic Segmentation Algorithm and Back Propagation Network Classification.
    Lavanya M; Kannan PM
    Asian Pac J Cancer Prev; 2017 Dec; 18(12):3395-3399. PubMed ID: 29286609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic multiorgan segmentation in thorax CT images using U-net-GAN.
    Dong X; Lei Y; Wang T; Thomas M; Tang L; Curran WJ; Liu T; Yang X
    Med Phys; 2019 May; 46(5):2157-2168. PubMed ID: 30810231
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Segmentation of pulmonary nodules using adaptive local region energy with probability density function-based similarity distance and multi-features clustering.
    Li B; Chen Q; Peng G; Guo Y; Chen K; Tian L; Ou S; Wang L
    Biomed Eng Online; 2016 May; 15(1):49. PubMed ID: 27150553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Semantic Segmentation of Kidney and Space-Occupying Lesion Area Based on SCNN and ResNet Models Combined with SIFT-Flow Algorithm.
    Xia KJ; Yin HS; Zhang YD
    J Med Syst; 2018 Nov; 43(1):2. PubMed ID: 30456668
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FYU-Net: A Cascading Segmentation Network for Kidney Tumor Medical Imaging.
    Feng H; Kou X; Tang Z; Li L
    Comput Math Methods Med; 2022; 2022():4792532. PubMed ID: 36303948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computer-aided detection of kidney tumor on abdominal computed tomography scans.
    Kim DY; Park JW
    Acta Radiol; 2004 Nov; 45(7):791-5. PubMed ID: 15624525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An effective deep network for automatic segmentation of complex lung tumors in CT images.
    Wang B; Chen K; Tian X; Yang Y; Zhang X
    Med Phys; 2021 Sep; 48(9):5004-5016. PubMed ID: 34224147
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-view secondary input collaborative deep learning for lung nodule 3D segmentation.
    Dong X; Xu S; Liu Y; Wang A; Saripan MI; Li L; Zhang X; Lu L
    Cancer Imaging; 2020 Aug; 20(1):53. PubMed ID: 32738913
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RPLS-Net: pulmonary lobe segmentation based on 3D fully convolutional networks and multi-task learning.
    Liu J; Wang C; Guo J; Shao J; Xu X; Liu X; Li H; Li W; Yi Z
    Int J Comput Assist Radiol Surg; 2021 Jun; 16(6):895-904. PubMed ID: 33846890
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tumor conspicuity enhancement-based segmentation model for liver tumor segmentation and RECIST diameter measurement in non-contrast CT images.
    Liu H; Zhou Y; Gou S; Luo Z
    Comput Biol Med; 2024 May; 174():108420. PubMed ID: 38613896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Robust explanation supervision for false positive reduction in pulmonary nodule detection.
    Zhao Q; Chang CW; Yang X; Zhao L
    Med Phys; 2024 Mar; 51(3):1687-1701. PubMed ID: 38224306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Learning fuzzy clustering for SPECT/CT segmentation via convolutional neural networks.
    Chen J; Li Y; Luna LP; Chung HW; Rowe SP; Du Y; Solnes LB; Frey EC
    Med Phys; 2021 Jul; 48(7):3860-3877. PubMed ID: 33905560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lung nodule segmentation using Salp Shuffled Shepherd Optimization Algorithm-based Generative Adversarial Network.
    Jain S; Indora S; Atal DK
    Comput Biol Med; 2021 Oct; 137():104811. PubMed ID: 34492518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Semi-automated infarct segmentation from follow-up noncontrast CT scans in patients with acute ischemic stroke.
    Kuang H; Menon BK; Qiu W
    Med Phys; 2019 Sep; 46(9):4037-4045. PubMed ID: 31286534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A cascaded dual-pathway residual network for lung nodule segmentation in CT images.
    Liu H; Cao H; Song E; Ma G; Xu X; Jin R; Jin Y; Hung CC
    Phys Med; 2019 Jul; 63():112-121. PubMed ID: 31221402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Efficient Pipeline for Abdomen Segmentation in CT Images.
    Koyuncu H; Ceylan R; Sivri M; Erdogan H
    J Digit Imaging; 2018 Apr; 31(2):262-274. PubMed ID: 29067570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.