BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37348338)

  • 1. Microscopic insights on clathrate hydrate growth from non-equilibrium molecular dynamics simulations.
    Phan A; Stamatakis M; Koh CA; Striolo A
    J Colloid Interface Sci; 2023 Nov; 649():185-193. PubMed ID: 37348338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The growth of structure I methane hydrate from molecular dynamics simulations.
    Tung YT; Chen LJ; Chen YP; Lin ST
    J Phys Chem B; 2010 Aug; 114(33):10804-13. PubMed ID: 20669917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant adsorption and interfacial tension investigations on cyclopentane hydrate.
    Aman ZM; Olcott K; Pfeiffer K; Sloan ED; Sum AK; Koh CA
    Langmuir; 2013 Feb; 29(8):2676-82. PubMed ID: 23363244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Clathrate-Water Interface Is Oleophilic.
    Bertolazzo AA; Naullage PM; Peters B; Molinero V
    J Phys Chem Lett; 2018 Jun; 9(12):3224-3231. PubMed ID: 29812945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methane hydrate phase equilibrium considering dissolved methane concentrations and interfacial geometries from molecular simulations.
    Li K; Chen B; Yang M; Song Y; Sum AK
    J Chem Phys; 2023 Dec; 159(24):. PubMed ID: 38153154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular insights into clathrate hydrate nucleation at an ice-solution interface.
    Pirzadeh P; Kusalik PG
    J Am Chem Soc; 2013 May; 135(19):7278-87. PubMed ID: 23638636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition.
    Alavi S; Ripmeester JA
    J Chem Phys; 2010 Apr; 132(14):144703. PubMed ID: 20406006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of nucleation of methane hydrate crystals: Interfacial theory and molecular simulation.
    Mirzaeifard S; Servio P; Rey AD
    J Colloid Interface Sci; 2019 Dec; 557():556-567. PubMed ID: 31550648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic properties and phase transtions in the H2O/CO2/CH4 system.
    Svandal A; Kuznetsova T; Kvamme B
    Phys Chem Chem Phys; 2006 Apr; 8(14):1707-13. PubMed ID: 16633655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the phase behaviors of hydrocarbon and noble gas clathrate hydrates: Dissociation pressures, phase diagram, occupancies, and equilibrium with aqueous solution.
    Tanaka H; Yagasaki T; Matsumoto M
    J Chem Phys; 2018 Aug; 149(7):074502. PubMed ID: 30134723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation rate analysis of methane hydrate from molecular dynamics simulations.
    Yuhara D; Barnes BC; Suh D; Knott BC; Beckham GT; Yasuoka K; Wu DT; Sum AK
    Faraday Discuss; 2015; 179():463-74. PubMed ID: 25876773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How Do Surfactants Control the Agglomeration of Clathrate Hydrates?
    Naullage PM; Bertolazzo AA; Molinero V
    ACS Cent Sci; 2019 Mar; 5(3):428-439. PubMed ID: 30937370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleation and control of clathrate hydrates: insights from simulation.
    Moon C; Hawtin RW; Rodger PM
    Faraday Discuss; 2007; 136():367-82; discussion 395-407. PubMed ID: 17955821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does Confinement Enable Methane Hydrate Growth at Low Pressures? Insights from Molecular Dynamics Simulations.
    Yu KB; Yazaydin AO
    J Phys Chem C Nanomater Interfaces; 2020 May; 124(20):11015-11022. PubMed ID: 32582402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface morphology effects on clathrate hydrate wettability.
    Phan A; Stoner HM; Stamatakis M; Koh CA; Striolo A
    J Colloid Interface Sci; 2022 Apr; 611():421-431. PubMed ID: 34968961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Massively parallel molecular dynamics simulation of formation of clathrate-hydrate precursors at planar water-methane interfaces: insights into heterogeneous nucleation.
    English NJ; Lauricella M; Meloni S
    J Chem Phys; 2014 May; 140(20):204714. PubMed ID: 24880318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic Hydration and the Effect of NaCl Salt in the Adsorption of Hydrocarbons and Surfactants on Clathrate Hydrates.
    Jiménez-Ángeles F; Firoozabadi A
    ACS Cent Sci; 2018 Jul; 4(7):820-831. PubMed ID: 30062110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergent Properties of Antiagglomerant Films Control Methane Transport: Implications for Hydrate Management.
    Sicard F; Bui T; Monteiro D; Lan Q; Ceglio M; Burress C; Striolo A
    Langmuir; 2018 Aug; 34(33):9701-9710. PubMed ID: 30058809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of the water/methane interface on methane hydrate cages: the potential of mean force and cage lifetimes.
    Mastny EA; Miller CA; de Pablo JJ
    J Chem Phys; 2008 Jul; 129(3):034701. PubMed ID: 18647032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic Molecular Insights into Hydrate Formation and Growth in Pure and Saline Water Environments.
    Thakre N; Palodkar AV; Dongre HJ; Jana AK
    J Phys Chem A; 2020 May; 124(21):4241-4252. PubMed ID: 32368914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.