BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37348374)

  • 1. Porous organic materials for iodine adsorption.
    Kurisingal JF; Yun H; Hong CS
    J Hazard Mater; 2023 Sep; 458():131835. PubMed ID: 37348374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of iodine in metal-organic framework materials.
    Zhang X; Maddock J; Nenoff TM; Denecke MA; Yang S; Schröder M
    Chem Soc Rev; 2022 Apr; 51(8):3243-3262. PubMed ID: 35363235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance removal of radionuclides by porous organic frameworks from the aquatic environment: A review.
    Gendy EA; Oyekunle DT; Ali J; Ifthikar J; El-Motaleb Mosad Ramadan A; Chen Z
    J Environ Radioact; 2021 Nov; 238-239():106710. PubMed ID: 34481100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient adsorption of radioactive iodine by covalent organic framework/chitosan aerogel.
    Wang X; Meng R; Zhao S; Jing Z; Jin Y; Zhang J; Pi X; Du Q; Chen L; Li Y
    Int J Biol Macromol; 2024 Mar; 260(Pt 2):129690. PubMed ID: 38266855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iodine Adsorption in Metal Organic Frameworks in the Presence of Humidity.
    Banerjee D; Chen X; Lobanov SS; Plonka AM; Chan X; Daly JA; Kim T; Thallapally PK; Parise JB
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10622-10626. PubMed ID: 29547256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of iodine by dry adsorbents in filtered containment venting system after 10 years of Fukushima accident.
    Ahad J; Ahmad M; Farooq A; Waheed K; Irfan N
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):74628-74670. PubMed ID: 37231136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of metal-organic frameworks for separation of xenon and krypton.
    Banerjee D; Cairns AJ; Liu J; Motkuri RK; Nune SK; Fernandez CA; Krishna R; Strachan DM; Thallapally PK
    Acc Chem Res; 2015 Feb; 48(2):211-9. PubMed ID: 25479165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymorphic Covalent Organic Frameworks: Molecularly Defined Pore Structures and Iodine Adsorption Property.
    Wang C; Jiang S; Ma W; Liu Z; Liu L; Zou Y; Xu B; Tian W
    Molecules; 2023 Jan; 28(1):. PubMed ID: 36615656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Iodine Capture by Covalent Organic Frameworks.
    Yang Y; Tu C; Yin H; Liu J; Cheng F; Luo F
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36558178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetrathiafulvalene-based covalent organic frameworks for ultrahigh iodine capture.
    Chang J; Li H; Zhao J; Guan X; Li C; Yu G; Valtchev V; Yan Y; Qiu S; Fang Q
    Chem Sci; 2021 May; 12(24):8452-8457. PubMed ID: 34221327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesizing covalent organic frameworks for unprecedented iodine capture performance.
    AlNeyadi SS; Alhassani MT; Aleissaee AS; J S; Khalaf AH; Alteneij AA; Alyaarbi YY
    Heliyon; 2024 Feb; 10(4):e25921. PubMed ID: 38420374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From Supramolecular Organic Cages to Porous Covalent Organic Frameworks for Enhancing Iodine Adsorption Capability by Fully Exposed Nitrogen-Rich Sites.
    Cheng K; Li H; Wang JR; Li PZ; Zhao Y
    Small; 2023 Aug; 19(34):e2301998. PubMed ID: 37162443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfur Dioxide Capture in Metal-Organic Frameworks, Metal-Organic Cages, and Porous Organic Cages.
    Gupta NK; López-Olvera A; González-Zamora E; Martínez-Ahumada E; Ibarra IA
    Chempluschem; 2022 Jun; 87(6):e202200006. PubMed ID: 35194971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing Stable and Porous Covalent Organic Frameworks for Efficient Iodine Vapor Capture.
    Zhai L; Han D; Dong J; Jiang W; Nie R; Yang X; Luo X; Li Z
    Macromol Rapid Commun; 2021 Jul; 42(13):e2100032. PubMed ID: 34050692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linkage Design in Two-Dimensional Covalent Organic Frameworks for High Iodine Uptake.
    Zhang Y; Shi W; Zhao Y; Zhang C; Zhi Y
    Macromol Rapid Commun; 2023 Apr; 44(7):e2200787. PubMed ID: 36717982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triazine-based porous organic polymers for reversible capture of iodine and utilization in antibacterial application.
    Mohan A; Al-Sayah MH; Ahmed A; El-Kadri OM
    Sci Rep; 2022 Feb; 12(1):2638. PubMed ID: 35173259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Modulation of Nitrogen-Rich Covalent Organic Frameworks for Iodine Capture.
    Shreeraj G; Sah A; Sarkar S; Giri A; Sahoo A; Patra A
    Langmuir; 2023 Nov; 39(45):16069-16078. PubMed ID: 37847043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodine-Capture Capacity.
    Xie Y; Pan T; Lei Q; Chen C; Dong X; Yuan Y; Shen J; Cai Y; Zhou C; Pinnau I; Han Y
    Angew Chem Int Ed Engl; 2021 Oct; 60(41):22432-22440. PubMed ID: 34431190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous Cationic Covalent Triazine-Based Frameworks as Platforms for Efficient CO
    Xu G; Zhu Y; Xie W; Zhang S; Yao C; Xu Y
    Chem Asian J; 2019 Oct; 14(19):3259-3263. PubMed ID: 31441220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3D Covalent Organic Framework with Exceptionally High Iodine Capture Capability.
    Wang C; Wang Y; Ge R; Song X; Xing X; Jiang Q; Lu H; Hao C; Guo X; Gao Y; Jiang D
    Chemistry; 2018 Jan; 24(3):585-589. PubMed ID: 29178592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.