These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. An Endowment Effect Study in the European Union Emission Trading Market based on Trading Price and Price Fluctuation. Wang J; Gu F; Liu Y; Fan Y; Guo J Int J Environ Res Public Health; 2020 May; 17(9):. PubMed ID: 32403455 [TBL] [Abstract][Full Text] [Related]
4. EEG-Based Emotion Classification in Financial Trading Using Deep Learning: Effects of Risk Control Measures. Tripathi B; Sharma RK Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050533 [TBL] [Abstract][Full Text] [Related]
5. Ecology of trading strategies in a forex market for limit and market orders. Sueshige T; Kanazawa K; Takayasu H; Takayasu M PLoS One; 2018; 13(12):e0208332. PubMed ID: 30557323 [TBL] [Abstract][Full Text] [Related]
6. QF-TraderNet: Intraday Trading Qiu Y; Qiu Y; Yuan Y; Chen Z; Lee R Front Artif Intell; 2021; 4():749878. PubMed ID: 34778753 [TBL] [Abstract][Full Text] [Related]
7. Price Trailing for Financial Trading Using Deep Reinforcement Learning. Tsantekidis A; Passalis N; Toufa AS; Saitas-Zarkias K; Chairistanidis S; Tefas A IEEE Trans Neural Netw Learn Syst; 2021 Jul; 32(7):2837-2846. PubMed ID: 32516114 [TBL] [Abstract][Full Text] [Related]
8. Diversity-driven knowledge distillation for financial trading using Deep Reinforcement Learning. Tsantekidis A; Passalis N; Tefas A Neural Netw; 2021 Aug; 140():193-202. PubMed ID: 33774425 [TBL] [Abstract][Full Text] [Related]
9. Asynchronous Deep Double Dueling Q-learning for trading-signal execution in limit order book markets. Nagy P; Calliess JP; Zohren S Front Artif Intell; 2023; 6():1151003. PubMed ID: 37818429 [TBL] [Abstract][Full Text] [Related]
10. Forecasting Quoted Depth With the Limit Order Book. Libman D; Haber S; Schaps M Front Artif Intell; 2021; 4():667780. PubMed ID: 34046586 [TBL] [Abstract][Full Text] [Related]
12. Deep Reinforcement Learning-Based Trading Strategy for Load Aggregators on Price-Responsive Demand. Yang G; Du S; Duan Q; Su J Comput Intell Neurosci; 2022; 2022():6884956. PubMed ID: 36131901 [TBL] [Abstract][Full Text] [Related]
13. Deep Direct Reinforcement Learning for Financial Signal Representation and Trading. Deng Y; Bao F; Kong Y; Ren Z; Dai Q IEEE Trans Neural Netw Learn Syst; 2017 Mar; 28(3):653-664. PubMed ID: 26890927 [TBL] [Abstract][Full Text] [Related]
14. Classification of position management strategies at the order-book level and their influences on future market-price formation. Sueshige T; Sornette D; Takayasu H; Takayasu M PLoS One; 2019; 14(8):e0220645. PubMed ID: 31442240 [TBL] [Abstract][Full Text] [Related]
15. The dynamics of the aggressive order during a crisis. Lee MY; Jung WS; Oh G PLoS One; 2020; 15(5):e0232820. PubMed ID: 32442203 [TBL] [Abstract][Full Text] [Related]
16. Minimum tick size, market quality and costs of trade execution in Vietnam. Vo DH; Doan B PLoS One; 2023; 18(5):e0285821. PubMed ID: 37200361 [TBL] [Abstract][Full Text] [Related]
17. Identification of Insider Trading in the Securities Market Based on Multi-task Deep Neural Network. Li G; Li Z; Wang Z; Zhang K Comput Intell Neurosci; 2022; 2022():4874516. PubMed ID: 35498190 [TBL] [Abstract][Full Text] [Related]
18. A New Grey Relational Analysis Model Based on the Characteristic of Inscribed Core (IC-GRA) and Its Application on Seven-Pilot Carbon Trading Markets of China. Wang L; Yin K; Cao Y; Li X Int J Environ Res Public Health; 2018 Dec; 16(1):. PubMed ID: 30602701 [TBL] [Abstract][Full Text] [Related]
19. Carbon price forecasting: a novel deep learning approach. Zhang F; Wen N Environ Sci Pollut Res Int; 2022 Aug; 29(36):54782-54795. PubMed ID: 35306656 [TBL] [Abstract][Full Text] [Related]
20. Statistical properties and pre-hit dynamics of price limit hits in the Chinese stock markets. Wan YL; Xie WJ; Gu GF; Jiang ZQ; Chen W; Xiong X; Zhang W; Zhou WX PLoS One; 2015; 10(4):e0120312. PubMed ID: 25874716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]