These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 37348618)
1. Fenton oxidation treatment of oxytetracycline fermentation residues: Harmless performance and bioresource properties. Jia W; Song J; Wang J; Li J; Li X; Wang Q; Chen X; Liu G; Yan Q; Zhou C; Xin S; Xin Y Chemosphere; 2023 Sep; 336():139201. PubMed ID: 37348618 [TBL] [Abstract][Full Text] [Related]
2. Oxidation of tetracycline and oxytetracycline for the photo-Fenton process: Their transformation products and toxicity assessment. Han CH; Park HD; Kim SB; Yargeau V; Choi JW; Lee SH; Park JA Water Res; 2020 Apr; 172():115514. PubMed ID: 31986402 [TBL] [Abstract][Full Text] [Related]
3. Cu@Fe Pham VL; Kim DG; Ko SO Chemosphere; 2018 Jan; 191():639-650. PubMed ID: 29078188 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the ozonation and Fenton process performances for the treatment of antibiotic containing manure. Uslu MO; Balcioğlu IA Sci Total Environ; 2009 May; 407(11):3450-8. PubMed ID: 19232678 [TBL] [Abstract][Full Text] [Related]
5. MOF-derived Fe/Ni@C marigold-like nanosheets as heterogeneous electro-Fenton cathode for efficient antibiotic oxytetracycline degradation. Liu E; Hu T; Al-Dhabi NA; Soyol-Erdene TO; Bayanjargal O; Zuo Y; Wang J; Tang W Environ Res; 2024 Apr; 247():118357. PubMed ID: 38325782 [TBL] [Abstract][Full Text] [Related]
6. A self-sufficient photo-Fenton system with coupling in-situ production H Shi W; Sun W; Liu Y; Zhang K; Sun H; Lin X; Hong Y; Guo F J Hazard Mater; 2022 Aug; 436():129141. PubMed ID: 35594677 [TBL] [Abstract][Full Text] [Related]
7. Fenton treatment of bio-treated fermentation-based pharmaceutical wastewater: removal and conversion of organic pollutants as well as estimation of operational costs. Cheng Y; Chen Y; Lu J; Nie J; Liu Y Environ Sci Pollut Res Int; 2018 Apr; 25(12):12083-12095. PubMed ID: 29453721 [TBL] [Abstract][Full Text] [Related]
8. Oxytetracycline induced the redox of iron and promoted the oxidation of As(III). Tong Y; Wang X; Wang X; Sun Z; Fang G; Gao J Sci Total Environ; 2022 Jul; 828():154381. PubMed ID: 35271928 [TBL] [Abstract][Full Text] [Related]
9. Rape Straw Supported FeS Nanoparticles with Encapsulated Structure as Peroxymonosulfate and Hydrogen Peroxide Activators for Enhanced Oxytetracycline Degradation. Wang G; Yang Y; Xu X; Zhang S; Yang Z; Cheng Z; Xian J; Li T; Pu Y; Zhou W; Xiang G; Pu Z Molecules; 2023 Mar; 28(6):. PubMed ID: 36985744 [TBL] [Abstract][Full Text] [Related]
10. Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: Kinetics and mechanism. Liu Y; He X; Duan X; Fu Y; Fatta-Kassinos D; Dionysiou DD Water Res; 2016 May; 95():195-204. PubMed ID: 27131094 [TBL] [Abstract][Full Text] [Related]
11. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes. Zhang Y; Zhuang Y; Geng J; Ren H; Xu K; Ding L Sci Total Environ; 2016 Apr; 550():184-191. PubMed ID: 26815295 [TBL] [Abstract][Full Text] [Related]
12. Rapid degradation of p-arsanilic acid with simultaneous arsenic removal from aqueous solution using Fenton process. Xie X; Hu Y; Cheng H Water Res; 2016 Feb; 89():59-67. PubMed ID: 26638133 [TBL] [Abstract][Full Text] [Related]
13. Fe Qi W; Long J; Feng C; Feng Y; Cheng D; Liu Y; Xue J; Li Z Water Res; 2019 Sep; 160():361-370. PubMed ID: 31158618 [TBL] [Abstract][Full Text] [Related]
14. Oxidative degradation of the antibiotic oxytetracycline by Cu@Fe Pham VL; Kim DG; Ko SO Sci Total Environ; 2018 Aug; 631-632():608-618. PubMed ID: 29533797 [TBL] [Abstract][Full Text] [Related]
15. Two novel and efficient plant composites for the degradation of oxytetracycline: nanoscale ferrous sulphide supported on rape straw waste. Yang Y; Xu X; Zhang S; Wang G; Yang Z; Cheng Z; Xian J; Li T; Pu Y; Zhou W; Xiang G Environ Sci Pollut Res Int; 2022 Sep; 29(42):63545-63559. PubMed ID: 35461415 [TBL] [Abstract][Full Text] [Related]
16. Ciprofloxacin degradation performances and mechanisms by the heterogeneous electro-Fenton with flocculated fermentation biochar. Jin Y; Huang P; Chen X; Li LP; Lin CY; Chen X; Ding R; Liu J; Chen R Environ Pollut; 2023 May; 324():121425. PubMed ID: 36898645 [TBL] [Abstract][Full Text] [Related]
17. Toward green nano adsorbents and catalysts: Highly active Fe/Mn nanoparticles for enhanced oxidation of oxytetracycline and levofloxacin. Wu J; Li J; Owens G; Chen Z J Colloid Interface Sci; 2023 Feb; 632(Pt B):299-310. PubMed ID: 36435071 [TBL] [Abstract][Full Text] [Related]
18. Chronic impacts of oxytetracycline on mesophilic anaerobic digestion of excess sludge: Inhibition of hydrolytic acidification and enrichment of antibiotic resistome. Tian Z; Zhang Y; Yang M Environ Pollut; 2018 Jul; 238():1017-1026. PubMed ID: 29449116 [TBL] [Abstract][Full Text] [Related]
19. Kinetics and mechanisms of oxytetracycline degradation in an electro-Fenton system with a modified graphite felt cathode. Lai W; Xie G; Dai R; Kuang C; Xu Y; Pan Z; Zheng L; Yu L; Ye S; Chen Z; Li H J Environ Manage; 2020 Mar; 257():109968. PubMed ID: 31868637 [TBL] [Abstract][Full Text] [Related]
20. Enhanced removal of oxytetracycline by UV-driven advanced oxidation with peracetic acid: Insight into the degradation intermediates and N-nitrosodimethylamine formation potential. Yan T; Ping Q; Zhang A; Wang L; Dou Y; Li Y Chemosphere; 2021 Jul; 274():129726. PubMed ID: 33529947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]