These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 37349382)

  • 1. Remaining useful lifetime estimation for discrete power electronic devices using physics-informed neural network.
    Lu Z; Guo C; Liu M; Shi R
    Sci Rep; 2023 Jun; 13(1):10167. PubMed ID: 37349382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-driven learning of chaotic dynamical systems using Discrete-Temporal Sobolev Networks.
    Kennedy C; Crowdis T; Hu H; Vaidyanathan S; Zhang HK
    Neural Netw; 2024 May; 173():106152. PubMed ID: 38359640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics-informed neural networks based on adaptive weighted loss functions for Hamilton-Jacobi equations.
    Liu Y; Cai L; Chen Y; Wang B
    Math Biosci Eng; 2022 Sep; 19(12):12866-12896. PubMed ID: 36654026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physics-informed neural networks to solve lumped kinetic model for chromatography process.
    Tang SY; Yuan YH; Chen YC; Yao SJ; Wang Y; Lin DQ
    J Chromatogr A; 2023 Oct; 1708():464346. PubMed ID: 37716084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physics-informed neural networks for hydraulic transient analysis in pipeline systems.
    Ye J; Do NC; Zeng W; Lambert M
    Water Res; 2022 Aug; 221():118828. PubMed ID: 35841787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On acoustic fields of complex scatters based on physics-informed neural networks.
    Wang H; Li J; Wang L; Liang L; Zeng Z; Liu Y
    Ultrasonics; 2023 Feb; 128():106872. PubMed ID: 36323059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constructing Physics-Informed Neural Networks with Architecture Based on Analytical Modification of Numerical Methods by Solving the Problem of Modelling Processes in a Chemical Reactor.
    Tarkhov D; Lazovskaya T; Malykhina G
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a Soft Sensor Based on Long Short-Term Memory Artificial Neural Network (LSTM) for Wastewater Treatment Plants.
    Recio-Colmenares R; León Becerril E; Gurubel Tun KJ; Conchas RF
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for multi-case physics-informed neural networks for tube flows: a study using 2D flow scenarios.
    Wong HS; Chan WX; Li BH; Yap CH
    Sci Rep; 2024 May; 14(1):11577. PubMed ID: 38773243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LSTM Attention Neural-Network-Based Signal Detection for Hybrid Modulated Faster-Than-Nyquist Optical Wireless Communications.
    Cao M; Yao R; Xia J; Jia K; Wang H
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel transformer-based DL model enhanced by position-sensitive attention and gated hierarchical LSTM for aero-engine RUL prediction.
    Chen X
    Sci Rep; 2024 May; 14(1):10061. PubMed ID: 38698017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physics-informed attention-based neural network for hyperbolic partial differential equations: application to the Buckley-Leverett problem.
    Rodriguez-Torrado R; Ruiz P; Cueto-Felgueroso L; Green MC; Friesen T; Matringe S; Togelius J
    Sci Rep; 2022 May; 12(1):7557. PubMed ID: 35534639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robustness testing framework for RUL prediction Deep LSTM networks.
    Sayah M; Guebli D; Al Masry Z; Zerhouni N
    ISA Trans; 2021 Jul; 113():28-38. PubMed ID: 32646591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating molecular transport in the human brain from MRI with physics-informed neural networks.
    Zapf B; Haubner J; Kuchta M; Ringstad G; Eide PK; Mardal KA
    Sci Rep; 2022 Sep; 12(1):15475. PubMed ID: 36104360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recipes for when physics fails: recovering robust learning of physics informed neural networks.
    Bajaj C; McLennan L; Andeen T; Roy A
    Mach Learn Sci Technol; 2023 Mar; 4(1):015013. PubMed ID: 37680302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A parameter estimation method for chromatographic separation process based on physics-informed neural network.
    Zou T; Yajima T; Kawajiri Y
    J Chromatogr A; 2024 Aug; 1730():465077. PubMed ID: 38879976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification.
    Yang J; Peng Y; Xie J; Wang P
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Scheme with Acoustic Emission Hit Removal for the Remaining Useful Life Prediction of Concrete Structures.
    Nguyen TK; Ahmad Z; Kim JM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physics-informed machine learning methods for biomass gasification modeling by considering monotonic relationships.
    Ren S; Wu S; Weng Q
    Bioresour Technol; 2023 Feb; 369():128472. PubMed ID: 36509306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Modified PINN Approach for Identifiable Compartmental Models in Epidemiology with Application to COVID-19.
    Hu H; Kennedy CM; Kevrekidis PG; Zhang HK
    Viruses; 2022 Nov; 14(11):. PubMed ID: 36366562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.