These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 37349490)
1. Improving lake chlorophyll-a interpreting accuracy by combining spectral and texture features of remote sensing. Yang Y; Zhang X; Gao W; Zhang Y; Hou X Environ Sci Pollut Res Int; 2023 Jul; 30(35):83628-83642. PubMed ID: 37349490 [TBL] [Abstract][Full Text] [Related]
2. Novel methods for monitoring low chlorophyll-a concentrations in the large, oligotrophic Lake Malawi/Nyasa/Niassa. Makwinja R; Inagaki Y; Tesfamichael SG; Curtis CJ J Environ Manage; 2024 Jul; 364():121462. PubMed ID: 38878578 [TBL] [Abstract][Full Text] [Related]
3. Remote sensing estimation of chlorophyll-a concentration in Taihu Lake considering spatial and temporal variations. Cheng C; Wei Y; Lv G; Xu N Environ Monit Assess; 2019 Jan; 191(2):84. PubMed ID: 30659368 [TBL] [Abstract][Full Text] [Related]
4. Assessing the effectiveness of Landsat 8 chlorophyll a retrieval algorithms for regional freshwater monitoring. Boucher J; Weathers KC; Norouzi H; Steele B Ecol Appl; 2018 Jun; 28(4):1044-1054. PubMed ID: 29847690 [TBL] [Abstract][Full Text] [Related]
5. Estimation of the lake trophic state index (TSI) using hyperspectral remote sensing in Northeast China. Lyu L; Song K; Wen Z; Liu G; Shang Y; Li S; Tao H; Wang X; Hou J Opt Express; 2022 Mar; 30(7):10329-10345. PubMed ID: 35473003 [TBL] [Abstract][Full Text] [Related]
6. A ground-based remote sensing system for high-frequency and real-time monitoring of phytoplankton blooms. Wang W; Shi K; Zhang Y; Li N; Sun X; Zhang D; Zhang Y; Qin B; Zhu G J Hazard Mater; 2022 Oct; 439():129623. PubMed ID: 35868088 [TBL] [Abstract][Full Text] [Related]
7. Long-term spatial-temporal monitoring of eutrophication in Lake Burdur using remote sensing data. Tuygun GT; Salgut S; Elçi A Water Sci Technol; 2023 May; 87(9):2184-2194. PubMed ID: 37186623 [TBL] [Abstract][Full Text] [Related]
8. [Analysis on Diurnal Variation of Chlorophyll-a Concentration of Taihu Lake Based on Optical Classification with GOCI Data]. Bao Y; Tian QJ; Chen M; Lü CG Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2562-7. PubMed ID: 30074364 [TBL] [Abstract][Full Text] [Related]
9. Algal biomass mapping of eutrophic lakes using a machine learning approach with MODIS images. Lai L; Zhang Y; Cao Z; Liu Z; Yang Q Sci Total Environ; 2023 Jul; 880():163357. PubMed ID: 37028659 [TBL] [Abstract][Full Text] [Related]
10. Dynamic monitoring and analysis of chlorophyll-a concentrations in global lakes using Sentinel-2 images in Google Earth Engine. Zhao D; Huang J; Li Z; Yu G; Shen H Sci Total Environ; 2024 Feb; 912():169152. PubMed ID: 38061660 [TBL] [Abstract][Full Text] [Related]
11. Temporal dependence of chlorophyll a-nutrient relationships in Lake Taihu: Drivers and management implications. Zou W; Zhu G; Xu H; Zhu M; Zhang Y; Qin B J Environ Manage; 2022 Mar; 306():114476. PubMed ID: 35051816 [TBL] [Abstract][Full Text] [Related]
12. Satellite mapping reveals phytoplankton biomass's spatio-temporal dynamics and responses to environmental factors in a eutrophic inland lake. Lai L; Zhang Y; Han T; Zhang M; Cao Z; Liu Z; Yang Q; Chen X J Environ Manage; 2024 Jun; 360():121134. PubMed ID: 38749137 [TBL] [Abstract][Full Text] [Related]
13. Prediction of lake chlorophyll concentration using the BP neural network and Sentinel-2 images based on time features. Hu H; Fu X; Li H; Wang F; Duan W; Zhang L; Liu M Water Sci Technol; 2023 Feb; 87(3):539-554. PubMed ID: 36789702 [TBL] [Abstract][Full Text] [Related]
14. A novel chlorophyll-a retrieval model based on suspended particulate matter classification and different machine learning. Fang C; Song C; Wen Z; Liu G; Wang X; Li S; Shang Y; Tao H; Lyu L; Song K Environ Res; 2024 Jan; 240(Pt 1):117430. PubMed ID: 37866530 [TBL] [Abstract][Full Text] [Related]
15. [Remote Sensing Estimation of Chlorophyll-a Concentration in Inland Lakes Based on GOCI Image and Optical Classification of Water Body]. Feng C; Jin Q; Wang YN; Zhao LN; Lu H; Li YM Huan Jing Ke Xue; 2015 May; 36(5):1557-64. PubMed ID: 26314100 [TBL] [Abstract][Full Text] [Related]
16. Response of cyanobacterial bloom risk to nitrogen and phosphorus concentrations in large shallow lakes determined through geographical detector: A case study of Taihu Lake, China. Li S; Liu C; Sun P; Ni T Sci Total Environ; 2022 Apr; 816():151617. PubMed ID: 34798090 [TBL] [Abstract][Full Text] [Related]
17. Long-term trend forecast of chlorophyll-a concentration over eutrophic lakes based on time series decomposition and deep learning algorithm. Chen C; Hu M; Chen Q; Zhang J; Feng T; Cui Z Sci Total Environ; 2024 Nov; 951():175451. PubMed ID: 39134277 [TBL] [Abstract][Full Text] [Related]
18. MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source. Duan H; Tao M; Loiselle SA; Zhao W; Cao Z; Ma R; Tang X Water Res; 2017 Oct; 122():455-470. PubMed ID: 28624729 [TBL] [Abstract][Full Text] [Related]
19. Remote sensing models using Landsat satellite data to monitor algal blooms in Lake Champlain. Trescott A; Park MH Water Sci Technol; 2013; 67(5):1113-20. PubMed ID: 23416605 [TBL] [Abstract][Full Text] [Related]
20. Long-term trend of heat waves and potential effects on phytoplankton blooms in Lake Qiandaohu, a key drinking water reservoir. Huang Q; Li N; Li Y Environ Sci Pollut Res Int; 2021 Dec; 28(48):68448-68459. PubMed ID: 34272668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]