These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37349505)

  • 1. Electron cooling in graphene enhanced by plasmon-hydron resonance.
    Yu X; Principi A; Tielrooij KJ; Bonn M; Kavokine N
    Nat Nanotechnol; 2023 Aug; 18(8):898-904. PubMed ID: 37349505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classical Quantum Friction at Water-Carbon Interfaces.
    Bui AT; Thiemann FL; Michaelides A; Cox SJ
    Nano Lett; 2023 Jan; 23(2):580-587. PubMed ID: 36626824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluctuation-induced quantum friction in nanoscale water flows.
    Kavokine N; Bocquet ML; Bocquet L
    Nature; 2022 Feb; 602(7895):84-90. PubMed ID: 35110760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of hydrodynamic plasmons and energy waves in graphene.
    Zhao W; Wang S; Chen S; Zhang Z; Watanabe K; Taniguchi T; Zettl A; Wang F
    Nature; 2023 Feb; 614(7949):688-693. PubMed ID: 36813893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon enhanced terahertz emission from single layer graphene.
    Bahk YM; Ramakrishnan G; Choi J; Song H; Choi G; Kim YH; Ahn KJ; Kim DS; Planken PC
    ACS Nano; 2014 Sep; 8(9):9089-96. PubMed ID: 25137623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple excitation of confined graphene plasmons by single free electrons.
    Garcıía de Abajo FJ
    ACS Nano; 2013 Dec; 7(12):11409-19. PubMed ID: 24219514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impart of Heterogeneous Charge Polarization and Distribution on Friction at Water-Graphene Interfaces: a Density-Functional-Theory based Machine Learning Study.
    Li H; Guo W; Guo Y
    J Phys Chem Lett; 2024 Jun; 15(25):6585-6591. PubMed ID: 38885449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncovering a Universal Molecular Mechanism of Salt Ion Adsorption at Solid/Water Interfaces.
    Misra RP; Blankschtein D
    Langmuir; 2021 Jan; 37(2):722-733. PubMed ID: 33395299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic picture of ultrafast charge transport in graphene.
    Mics Z; Tielrooij KJ; Parvez K; Jensen SA; Ivanov I; Feng X; Müllen K; Bonn M; Turchinovich D
    Nat Commun; 2015 Jul; 6():7655. PubMed ID: 26179498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X; Jiang P; Ouyang Y; Lu S; Ren W; Chen J
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous friction of supercooled glycerol on mica.
    Lizée M; Coquinot B; Mariette G; Siria A; Bocquet L
    Nat Commun; 2024 Jul; 15(1):6129. PubMed ID: 39033119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substantially Enhancing Quantum Coherence of Electrons in Graphene via Electron-Plasmon Coupling.
    Cheng G; Qin W; Lin MH; Wei L; Fan X; Zhang H; Gwo S; Zeng C; Hou JG; Zhang Z
    Phys Rev Lett; 2017 Oct; 119(15):156803. PubMed ID: 29077465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear Terahertz Absorption of Graphene Plasmons.
    Jadidi MM; König-Otto JC; Winnerl S; Sushkov AB; Drew HD; Murphy TE; Mittendorff M
    Nano Lett; 2016 Apr; 16(4):2734-8. PubMed ID: 26978242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast radiative heat transfer.
    Yu R; Manjavacas A; García de Abajo FJ
    Nat Commun; 2017 Feb; 8(1):2. PubMed ID: 28232748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Observation of Charge Injection of Graphene in the Graphene/WSe
    Zhang L; Chen Z; Zhang R; Tan Y; Wu T; Shalaby M; Xie R; Xu J
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):47501-47506. PubMed ID: 31741390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot-Carrier Cooling in High-Quality Graphene Is Intrinsically Limited by Optical Phonons.
    Pogna EAA; Jia X; Principi A; Block A; Banszerus L; Zhang J; Liu X; Sohier T; Forti S; Soundarapandian K; Terrés B; Mehew JD; Trovatello C; Coletti C; Koppens FHL; Bonn M; Wang HI; van Hulst N; Verstraete MJ; Peng H; Liu Z; Stampfer C; Cerullo G; Tielrooij KJ
    ACS Nano; 2021 Jul; 15(7):11285-11295. PubMed ID: 34139125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Ultrafast Thermal Relaxation in Graphene Measured by Continuous-Wave Photomixing.
    Jadidi MM; Suess RJ; Tan C; Cai X; Watanabe K; Taniguchi T; Sushkov AB; Mittendorff M; Hone J; Drew HD; Fuhrer MS; Murphy TE
    Phys Rev Lett; 2016 Dec; 117(25):257401. PubMed ID: 28036204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene plasmonics for tunable terahertz metamaterials.
    Ju L; Geng B; Horng J; Girit C; Martin M; Hao Z; Bechtel HA; Liang X; Zettl A; Shen YR; Wang F
    Nat Nanotechnol; 2011 Sep; 6(10):630-4. PubMed ID: 21892164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terahertz transverse electric modes in graphene with DC current in hydrodynamic regime.
    Moiseenko IM; Popov VV; Fateev DV
    J Phys Condens Matter; 2022 May; 34(29):. PubMed ID: 35508149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.