These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 37349517)
1. Data-driven models to predict shale wettability for CO Ibrahim AF; Elkatatny S Sci Rep; 2023 Jun; 13(1):10151. PubMed ID: 37349517 [TBL] [Abstract][Full Text] [Related]
2. Predicting wettability of mineral/CO Tariq Z; Ali M; Hassanpouryouzband A; Yan B; Sun S; Hoteit H Chemosphere; 2023 Dec; 345():140469. PubMed ID: 37858769 [TBL] [Abstract][Full Text] [Related]
3. Improving predictions of shale wettability using advanced machine learning techniques and nature-inspired methods: Implications for carbon capture utilization and storage. Zhang H; Thanh HV; Rahimi M; Al-Mudhafar WJ; Tangparitkul S; Zhang T; Dai Z; Ashraf U Sci Total Environ; 2023 Jun; 877():162944. PubMed ID: 36940746 [TBL] [Abstract][Full Text] [Related]
4. Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel. Wong YJ; Arumugasamy SK; Chung CH; Selvarajoo A; Sethu V Environ Monit Assess; 2020 Jun; 192(7):439. PubMed ID: 32556670 [TBL] [Abstract][Full Text] [Related]
5. Shale Wettability Characteristics via Air/Brines and Air/Oil Contact Angles and Influence of Controlling Factors: A Case Study of Lower Indus Basin, Pakistan. Bhutto DK; Shar AM; Abbasi GR; Ansari U ACS Omega; 2023 Jan; 8(1):688-701. PubMed ID: 36643511 [TBL] [Abstract][Full Text] [Related]
6. Wettability of rock/CO Arif M; Abu-Khamsin SA; Iglauer S Adv Colloid Interface Sci; 2019 Jun; 268():91-113. PubMed ID: 30999164 [TBL] [Abstract][Full Text] [Related]
7. Modeling of carbon dioxide fixation by microalgae using hybrid artificial intelligence (AI) and fuzzy logic (FL) methods and optimization by genetic algorithm (GA). Kushwaha OS; Uthayakumar H; Kumaresan K Environ Sci Pollut Res Int; 2023 Feb; 30(10):24927-24948. PubMed ID: 35349067 [TBL] [Abstract][Full Text] [Related]
8. Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine. Li Y; Jiang P; She Q; Lin G Environ Pollut; 2018 Oct; 241():1115-1127. PubMed ID: 30029320 [TBL] [Abstract][Full Text] [Related]
9. Application of artificial intelligence models for prediction of groundwater level fluctuations: case study (Tehran-Karaj alluvial aquifer). Vadiati M; Rajabi Yami Z; Eskandari E; Nakhaei M; Kisi O Environ Monit Assess; 2022 Jul; 194(9):619. PubMed ID: 35904687 [TBL] [Abstract][Full Text] [Related]
10. Effect of Fluid-Rock Interactions on In Situ Bacterial Alteration of Interfacial Properties and Wettability of CO Park T; Yoon S; Jung J; Kwon TH Environ Sci Technol; 2020 Dec; 54(23):15355-15365. PubMed ID: 33186009 [TBL] [Abstract][Full Text] [Related]
11. The Influence of Oil Composition, Rock Mineralogy, Aging Time, and Brine Pre-soak on Shale Wettability. Saputra IWR; Adebisi O; Ladan EB; Bagareddy A; Sarmah A; Schechter DS ACS Omega; 2022 Jan; 7(1):85-100. PubMed ID: 35036681 [TBL] [Abstract][Full Text] [Related]
12. Molecular Dynamics Simulations of Oil-Water Wetting Models of Organic Matter and Minerals in Shale at the Nanometer Scale. Dong Z; Xue H; Li B; Tian S; Lu S; Lu S J Nanosci Nanotechnol; 2021 Jan; 21(1):85-97. PubMed ID: 33213615 [TBL] [Abstract][Full Text] [Related]
13. Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction. Tabbussum R; Dar AQ Environ Sci Pollut Res Int; 2021 May; 28(20):25265-25282. PubMed ID: 33453033 [TBL] [Abstract][Full Text] [Related]
15. Modelling monthly mean air temperature using artificial neural network, adaptive neuro-fuzzy inference system and support vector regression methods: A case of study for Turkey. Yakut E; Süzülmüş S Network; 2020; 31(1-4):1-36. PubMed ID: 32397767 [TBL] [Abstract][Full Text] [Related]
16. Utilization of Artificial Neural Network in Predicting the Total Organic Carbon in Devonian Shale Using the Conventional Well Logs and the Spectral Gamma Ray. Siddig O; Abdulhamid Mahmoud A; Elkatatny S; Soupios P Comput Intell Neurosci; 2021; 2021():2486046. PubMed ID: 34349796 [TBL] [Abstract][Full Text] [Related]
17. Wettability phenomena at the CO2-brine-mineral interface: implications for geologic carbon sequestration. Wang S; Edwards IM; Clarens AF Environ Sci Technol; 2013 Jan; 47(1):234-41. PubMed ID: 22857395 [TBL] [Abstract][Full Text] [Related]
18. Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study. Heddam S Environ Monit Assess; 2014 Jan; 186(1):597-619. PubMed ID: 24057665 [TBL] [Abstract][Full Text] [Related]
19. Machine learning accelerated approach to infer nuclear magnetic resonance porosity for a middle eastern carbonate reservoir. Mustafa A; Tariq Z; Mahmoud M; Abdulraheem A Sci Rep; 2023 Mar; 13(1):3956. PubMed ID: 36894553 [TBL] [Abstract][Full Text] [Related]
20. Prediction of Total Organic Carbon in Organic-Rich Shale Rocks Using Thermal Neutron Parameters. Hassan A; Mohammed E; Oshaish A; Badhafere D; Ayranci K; Dong T; Waheed UB; El-Husseiny A; Mahmoud M ACS Omega; 2023 Feb; 8(5):4790-4801. PubMed ID: 36777603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]