These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Apple pomace as an alternative substrate for butanol production. Tigunova O; Bratishko V; Shulga S AMB Express; 2023 Dec; 13(1):138. PubMed ID: 38055129 [TBL] [Abstract][Full Text] [Related]
4. Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Keis S; Shaheen R; Jones DT Int J Syst Evol Microbiol; 2001 Nov; 51(Pt 6):2095-103. PubMed ID: 11760952 [TBL] [Abstract][Full Text] [Related]
5. Comparative genomic analysis of Clostridium acetobutylicum for understanding the mutations contributing to enhanced butanol tolerance and production. Xu M; Zhao J; Yu L; Yang ST J Biotechnol; 2017 Dec; 263():36-44. PubMed ID: 29050876 [TBL] [Abstract][Full Text] [Related]
6. Cultures of "Clostridium acetobutylicum" from various collections comprise Clostridium acetobutylicum, Clostridium beijerinckii, and two other distinct types based on DNA-DNA reassociation. Johnson JL; Toth J; Santiwatanakul S; Chen JS Int J Syst Bacteriol; 1997 Apr; 47(2):420-4. PubMed ID: 9103631 [TBL] [Abstract][Full Text] [Related]
7. The Draft Genome Sequence of a Novel High-Efficient Butanol-Producing Bacterium Clostridium Diolis Strain WST. Chen C; Sun C; Wu YR Curr Microbiol; 2018 Aug; 75(8):1011-1015. PubMed ID: 29564548 [TBL] [Abstract][Full Text] [Related]
8. Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7. Bruant G; Lévesque MJ; Peter C; Guiot SR; Masson L PLoS One; 2010 Sep; 5(9):e13033. PubMed ID: 20885952 [TBL] [Abstract][Full Text] [Related]
9. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System. Wang S; Dong S; Wang P; Tao Y; Wang Y Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147 [No Abstract] [Full Text] [Related]
11. Disruption of the Reductive 1,3-Propanediol Pathway Triggers Production of 1,2-Propanediol for Sustained Glycerol Fermentation by Clostridium pasteurianum. Pyne ME; Sokolenko S; Liu X; Srirangan K; Bruder MR; Aucoin MG; Moo-Young M; Chung DA; Chou CP Appl Environ Microbiol; 2016 Sep; 82(17):5375-88. PubMed ID: 27342556 [TBL] [Abstract][Full Text] [Related]
12. Acetone-butanol-ethanol production from substandard and surplus dates by Egyptian native Clostridium strains. Abd-Alla MH; Zohri AA; El-Enany AE; Ali SM Anaerobe; 2015 Apr; 32():77-86. PubMed ID: 25557787 [TBL] [Abstract][Full Text] [Related]
13. Novel and neglected issues of acetone-butanol-ethanol (ABE) fermentation by clostridia: Clostridium metabolic diversity, tools for process mapping and continuous fermentation systems. Patakova P; Linhova M; Rychtera M; Paulova L; Melzoch K Biotechnol Adv; 2013; 31(1):58-67. PubMed ID: 22306328 [TBL] [Abstract][Full Text] [Related]
14. Genome analysis of a hyper acetone-butanol-ethanol (ABE) producing Clostridium acetobutylicum BKM19. Cho C; Choe D; Jang YS; Kim KJ; Kim WJ; Cho BK; Papoutsakis ET; Bennett GN; Seung DY; Lee SY Biotechnol J; 2017 Feb; 12(2):. PubMed ID: 27918147 [TBL] [Abstract][Full Text] [Related]
15. Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial Clostridium community. Wen Z; Ledesma-Amaro R; Lu M; Jiang Y; Gao S; Jin M; Yang S Biotechnol Bioeng; 2020 Jul; 117(7):2008-2022. PubMed ID: 32170874 [TBL] [Abstract][Full Text] [Related]
16. Novel biobutanol fermentation at a large extractant volume ratio using immobilized Clostridium saccharoperbutylacetonicum N1-4. Darmayanti RF; Tashiro Y; Noguchi T; Gao M; Sakai K; Sonomoto K J Biosci Bioeng; 2018 Dec; 126(6):750-757. PubMed ID: 30017707 [TBL] [Abstract][Full Text] [Related]
17. The Draft Genome Sequence of Clostridium sp. Strain NJ4, a Bacterium Capable of Producing Butanol from Inulin Through Consolidated Bioprocessing. Jiang Y; Lu J; Chen T; Yan W; Dong W; Zhou J; Zhang W; Ma J; Jiang M; Xin F Curr Microbiol; 2018 Sep; 75(9):1221-1225. PubMed ID: 29796852 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering of Clostridium ljungdahlii for the production of hexanol and butanol from CO Lauer I; Philipps G; Jennewein S Microb Cell Fact; 2022 May; 21(1):85. PubMed ID: 35568911 [TBL] [Abstract][Full Text] [Related]
19. Improved Wen Z; Ledesma-Amaro R; Lin J; Jiang Y; Yang S Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30658972 [No Abstract] [Full Text] [Related]
20. Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Malaviya A; Jang YS; Lee SY Appl Microbiol Biotechnol; 2012 Feb; 93(4):1485-94. PubMed ID: 22052388 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]