These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 37349773)

  • 21. Visualization of endogenous enhancer-promoter interactions in a single nucleus through chromatin labeling.
    Park G; Cho WK
    Mol Cells; 2024 Oct; 47(11):100121. PubMed ID: 39384070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing Specific Networks of Chromatin Interactions with HiChIP.
    Di Giammartino DC; Polyzos A; Apostolou E
    Methods Mol Biol; 2022; 2532():113-141. PubMed ID: 35867248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Different enhancer classes in Drosophila bind distinct architectural proteins and mediate unique chromatin interactions and 3D architecture.
    Cubeñas-Potts C; Rowley MJ; Lyu X; Li G; Lei EP; Corces VG
    Nucleic Acids Res; 2017 Feb; 45(4):1714-1730. PubMed ID: 27899590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coming full circle: On the origin and evolution of the looping model for enhancer-promoter communication.
    Popay TM; Dixon JR
    J Biol Chem; 2022 Aug; 298(8):102117. PubMed ID: 35691341
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent evidence that TADs and chromatin loops are dynamic structures.
    Hansen AS; Cattoglio C; Darzacq X; Tjian R
    Nucleus; 2018 Jan; 9(1):20-32. PubMed ID: 29077530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genomic meta-analysis of the interplay between 3D chromatin organization and gene expression programs under basal and stress conditions.
    Nurick I; Shamir R; Elkon R
    Epigenetics Chromatin; 2018 Aug; 11(1):49. PubMed ID: 30157915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding 3D genome organization by multidisciplinary methods.
    Jerkovic I; Cavalli G
    Nat Rev Mol Cell Biol; 2021 Aug; 22(8):511-528. PubMed ID: 33953379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advances and challenges in CRISPR-based real-time imaging of dynamic genome organization.
    Thuma J; Chung YC; Tu LC
    Front Mol Biosci; 2023; 10():1173545. PubMed ID: 37065447
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-resolution simulations of chromatin folding at genomic rearrangements in malignant B cells provide mechanistic insights into proto-oncogene deregulation.
    Rico D; Kent D; Karataraki N; Mikulasova A; Berlinguer-Palmini R; Walker BA; Javierre BM; Russell LJ; Brackley CA
    Genome Res; 2022 Jul; 32(7):1355-1366. PubMed ID: 35863900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-Scale Imaging of the Dynamic Organization of Chromatin.
    García Fernández F; Huet S; Miné-Hattab J
    Int J Mol Sci; 2023 Nov; 24(21):. PubMed ID: 37958958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Constructing 3D interaction maps from 1D epigenomes.
    Zhu Y; Chen Z; Zhang K; Wang M; Medovoy D; Whitaker JW; Ding B; Li N; Zheng L; Wang W
    Nat Commun; 2016 Mar; 7():10812. PubMed ID: 26960733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine and Deep Learning Methods for Predicting 3D Genome Organization.
    Wall BPG; Nguyen M; Harrell JC; Dozmorov MG
    Methods Mol Biol; 2025; 2856():357-400. PubMed ID: 39283464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TADs: Dynamic structures to create stable regulatory functions.
    da Costa-Nunes JA; Noordermeer D
    Curr Opin Struct Biol; 2023 Aug; 81():102622. PubMed ID: 37302180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding.
    Hsieh TS; Cattoglio C; Slobodyanyuk E; Hansen AS; Rando OJ; Tjian R; Darzacq X
    Mol Cell; 2020 May; 78(3):539-553.e8. PubMed ID: 32213323
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation associated modules reflect 3D genome modularity associated with chromatin activity.
    Zheng L; Wang W
    Nat Commun; 2022 Sep; 13(1):5281. PubMed ID: 36075900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-cell Hi-C bridges microscopy and genome-wide sequencing approaches to study 3D chromatin organization.
    Ulianov SV; Tachibana-Konwalski K; Razin SV
    Bioessays; 2017 Oct; 39(10):. PubMed ID: 28792605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Super-resolution visualization and modeling of human chromosomal regions reveals cohesin-dependent loop structures.
    Hao X; Parmar JJ; Lelandais B; Aristov A; Ouyang W; Weber C; Zimmer C
    Genome Biol; 2021 May; 22(1):150. PubMed ID: 33975635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatin imaging and new technologies for imaging the nucleome.
    Szydlowski NA; Go JS; Hu YS
    Wiley Interdiscip Rev Syst Biol Med; 2019 May; 11(3):e1442. PubMed ID: 30456928
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visualizing Live Chromatin Dynamics through CRISPR-Based Imaging Techniques.
    Chaudhary N; Im JK; Nho SH; Kim H
    Mol Cells; 2021 Sep; 44(9):627-636. PubMed ID: 34588320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective.
    Kumar S; Kaur S; Seem K; Kumar S; Mohapatra T
    Front Cell Dev Biol; 2021; 9():774719. PubMed ID: 34957106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.