These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Exponentially fitted numerical method for solving singularly perturbed delay reaction-diffusion problem with nonlocal boundary condition. Wondimu GM; Woldaregay MM; Duressa GF; Dinka TG BMC Res Notes; 2023 Jun; 16(1):94. PubMed ID: 37277831 [TBL] [Abstract][Full Text] [Related]
5. Layer resolving numerical scheme for singularly perturbed parabolic convection-diffusion problem with an interior layer. Kusi GR; Habte AH; Bullo TA MethodsX; 2023; 10():101953. PubMed ID: 36545543 [TBL] [Abstract][Full Text] [Related]
6. A hybrid computational scheme for singularly perturbed Burgers'-Huxley equation. Daba IT; Gonfa GG MethodsX; 2024 Jun; 12():102574. PubMed ID: 38304393 [TBL] [Abstract][Full Text] [Related]
7. Uniformly convergent extended cubic B-spline collocation method for two parameters singularly perturbed time-delayed convection-diffusion problems. Negero NT BMC Res Notes; 2023 Oct; 16(1):282. PubMed ID: 37858117 [TBL] [Abstract][Full Text] [Related]
8. Fitted computational method for solving singularly perturbed small time lag problem. Tesfaye SK; Woldaregay MM; Dinka TG; Duressa GF BMC Res Notes; 2022 Oct; 15(1):318. PubMed ID: 36221103 [TBL] [Abstract][Full Text] [Related]
9. A parameter uniform method for two-parameter singularly perturbed boundary value problems with discontinuous data. Roy N; Jha A MethodsX; 2023; 10():102004. PubMed ID: 36684472 [TBL] [Abstract][Full Text] [Related]
10. Computational method for singularly perturbed parabolic differential equations with discontinuous coefficients and large delay. Daba IT; Duressa GF Heliyon; 2022 Sep; 8(9):e10742. PubMed ID: 36193532 [TBL] [Abstract][Full Text] [Related]
11. Accurate numerical scheme for singularly perturbed parabolic delay differential equation. Woldaregay MM; Duressa GF BMC Res Notes; 2021 Sep; 14(1):358. PubMed ID: 34526134 [TBL] [Abstract][Full Text] [Related]
12. Extended cubic B-spline collocation method for singularly perturbed parabolic differential-difference equation arising in computational neuroscience. Daba IT; Duressa GF Int J Numer Method Biomed Eng; 2021 Feb; 37(2):e3418. PubMed ID: 33222414 [TBL] [Abstract][Full Text] [Related]
13. Graded mesh B-spline collocation method for two parameters singularly perturbed boundary value problems. Andisso FS; Duressa GF MethodsX; 2023 Dec; 11():102336. PubMed ID: 37693653 [TBL] [Abstract][Full Text] [Related]
14. Fourth-order fitted mesh scheme for semilinear singularly perturbed reaction-diffusion problems. Reda BT; Bullo TA; Duressa GF BMC Res Notes; 2023 Nov; 16(1):354. PubMed ID: 38031190 [TBL] [Abstract][Full Text] [Related]
15. A fitted operator numerical method for singularly perturbed Fredholm integro-differential equation with integral initial condition. Oljira AF; Woldaregay MM BMC Res Notes; 2024 Jan; 17(1):23. PubMed ID: 38225651 [TBL] [Abstract][Full Text] [Related]
16. An efficient numerical approach for singularly perturbed time delayed parabolic problems with two-parameters. Daba IT; Melesse WG; Gelu FW; Kebede GD BMC Res Notes; 2024 Jun; 17(1):158. PubMed ID: 38845043 [TBL] [Abstract][Full Text] [Related]
17. Novel approach to solve singularly perturbed boundary value problems with negative shift parameter. Duressa GF Heliyon; 2021 Jul; 7(7):e07497. PubMed ID: 34286144 [TBL] [Abstract][Full Text] [Related]