These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Modified Characteristic Finite Element Method with Second-Order Spatial Accuracy for Solving Convection-Dominated Problem on Surfaces. Wu L; Feng X; He Y Entropy (Basel); 2023 Dec; 25(12):. PubMed ID: 38136511 [TBL] [Abstract][Full Text] [Related]
26. High order approximation on non-uniform meshes for generalized time-fractional telegraph equation. Sultana F; Pandey RK; Singh D; Agrawal OP MethodsX; 2022; 9():101905. PubMed ID: 36405364 [TBL] [Abstract][Full Text] [Related]
27. Spline-in-compression approximation of order of accuracy three (four) for second order non-linear IVPs on a graded mesh. Mohanty RK; Ghosh BP MethodsX; 2023 Dec; 11():102308. PubMed ID: 37601291 [TBL] [Abstract][Full Text] [Related]
28. An efficient technique based on cubic B-spline functions for solving time-fractional advection diffusion equation involving Atangana-Baleanu derivative. Shafiq M; Abbas M; Abualnaja KM; Huntul MJ; Majeed A; Nazir T Eng Comput; 2022; 38(1):901-917. PubMed ID: 34376880 [TBL] [Abstract][Full Text] [Related]
29. The numerical solution of high dimensional variable-order time fractional diffusion equation via the singular boundary method. Hosseini VR; Yousefi F; Zou WN J Adv Res; 2021 Sep; 32():73-84. PubMed ID: 34484827 [TBL] [Abstract][Full Text] [Related]
30. A 6-point subdivision scheme and its applications for the solution of 2nd order nonlinear singularly perturbed boundary value problems. Mustafa G; Baleanu D; Ejaz ST; Anjum K; Ahmadian A; Salahshour S; Ferrara M Math Biosci Eng; 2020 Sep; 17(6):6659-6677. PubMed ID: 33378870 [TBL] [Abstract][Full Text] [Related]
31. Linear B-spline finite element method for the generalized diffusion equation with delay. Lubo GT; Duressa GF BMC Res Notes; 2022 Jun; 15(1):195. PubMed ID: 35658930 [TBL] [Abstract][Full Text] [Related]
32. A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems. Lo WC; Chen L; Wang M; Nie Q J Comput Phys; 2012 Jun; 231(15):5062-5077. PubMed ID: 22773849 [TBL] [Abstract][Full Text] [Related]
33. An efficient computational scheme for solving coupled time-fractional Schrödinger equation via cubic B-spline functions. Mubashir Hayat A; Abbas M; Emadifar H; Alzaidi ASM; Nazir T; Aini Abdullah F PLoS One; 2024; 19(5):e0296909. PubMed ID: 38753667 [TBL] [Abstract][Full Text] [Related]
34. Stability and convergence of an implicit numerical method for the space and time fractional Bloch-Torrey equation. Yu Q; Liu F; Turner I; Burrage K Philos Trans A Math Phys Eng Sci; 2013 May; 371(1990):20120150. PubMed ID: 23547227 [TBL] [Abstract][Full Text] [Related]
35. Radial basis function-generated finite difference scheme for simulating the brain cancer growth model under radiotherapy in various types of computational domains. Dehghan M; Narimani N Comput Methods Programs Biomed; 2020 Oct; 195():105641. PubMed ID: 32726719 [TBL] [Abstract][Full Text] [Related]
36. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme. Ginzburg I Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489 [TBL] [Abstract][Full Text] [Related]
38. A stochastic numerical approach for a class of singular singularly perturbed system. Sabir Z; Botmart T; Raja MAZ; Weera W; Erdoğan F PLoS One; 2022; 17(11):e0277291. PubMed ID: 36441683 [TBL] [Abstract][Full Text] [Related]
39. Exponentially fitted multisymplectic scheme for conservative Maxwell equations with oscillary solutions. Yin X; Liu Y; Zhang J; Shen Y; Yan L PLoS One; 2021; 16(8):e0256108. PubMed ID: 34449783 [TBL] [Abstract][Full Text] [Related]
40. Influence of boundary condition types on unstable density-dependent flow. Ataie-Ashtiani B; Simmons CT; Werner AD Ground Water; 2014; 52(3):378-87. PubMed ID: 23659688 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]