BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37349831)

  • 1. Monitoring the growth dynamics of Tetragenococcus halophilus strains in lupine moromi fermentation using a multiplex-PCR system.
    Link T; Ehrmann MA
    BMC Res Notes; 2023 Jun; 16(1):115. PubMed ID: 37349831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The diversity among the species Tetragenococcus halophilus including new isolates from a lupine seed fermentation.
    Link T; Vogel RF; Ehrmann MA
    BMC Microbiol; 2021 Nov; 21(1):320. PubMed ID: 34798831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic profiling reveals differences in the adaptation of two Tetragenococcus halophilus strains to a lupine moromi model medium.
    Link T; Ehrmann MA
    BMC Microbiol; 2023 Jan; 23(1):14. PubMed ID: 36639757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbiota dynamics and volatile compounds in lupine based Moromi fermented at different salt concentrations.
    Lülf RH; Vogel RF; Ehrmann MA
    Int J Food Microbiol; 2021 Sep; 354():109316. PubMed ID: 34247020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbohydrate Sources Influence the Microbiota and Flavour Profile of a Lupine-Based Moromi Fermentation.
    Lülf RH; Selg-Mann K; Hoffmann T; Zheng T; Schirmer M; Ehrmann MA
    Foods; 2023 Jan; 12(1):. PubMed ID: 36613413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of viable bacterial starter cultures of Virgibacillus sp. and Tetragenococcus halophilus in fish sauce fermentation by real-time quantitative PCR.
    Udomsil N; Chen S; Rodtong S; Yongsawatdigul J
    Food Microbiol; 2016 Aug; 57():54-62. PubMed ID: 27052702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation.
    Udomsil N; Rodtong S; Choi YJ; Hua Y; Yongsawatdigul J
    J Agric Food Chem; 2011 Aug; 59(15):8401-8. PubMed ID: 21710980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromohalobacter moromii sp. nov., a moderately halophilic bacterium isolated from lupine-based moromi fermentation.
    Lülf RH; Hilgarth M; Ehrmann MA
    Syst Appl Microbiol; 2022 Jul; 45(4):126324. PubMed ID: 35580548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of co-inoculation and sequential inoculation of Tetragenococcus halophilus and Zygosaccharomyces rouxii on soy sauce fermentation.
    Devanthi PVP; Linforth R; Onyeaka H; Gkatzionis K
    Food Chem; 2018 Feb; 240():1-8. PubMed ID: 28946215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Sequential Inoculation of
    Li X; Xu X; Wu C; Tong X; Ou S
    Foods; 2023 Sep; 12(18):. PubMed ID: 37761218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soy sauce fermentation: Microorganisms, aroma formation, and process modification.
    Devanthi PVP; Gkatzionis K
    Food Res Int; 2019 Jun; 120():364-374. PubMed ID: 31000250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-in-oil-in-water double emulsion for the delivery of starter cultures in reduced-salt moromi fermentation of soy sauce.
    Devanthi PVP; Linforth R; El Kadri H; Gkatzionis K
    Food Chem; 2018 Aug; 257():243-251. PubMed ID: 29622206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetragenococcus halophilus MJ4 as a starter culture for repressing biogenic amine (cadaverine) formation during saeu-jeot (salted shrimp) fermentation.
    Kim KH; Lee SH; Chun BH; Jeong SE; Jeon CO
    Food Microbiol; 2019 Sep; 82():465-473. PubMed ID: 31027807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of an operon and its regulator required for autoaggregation in
    Endo R; Hotta S; Wakinaka T; Mogi Y; Watanabe J
    Appl Environ Microbiol; 2023 Dec; 89(12):e0145823. PubMed ID: 38014957
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of Tetragenococcus halophilus and Candida versatilis on the production of aroma-active and umami-taste compounds during soy sauce fermentation.
    Zhang L; Zhang L; Xu Y
    J Sci Food Agric; 2020 Apr; 100(6):2782-2790. PubMed ID: 32020610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examining the impact of
    Wang Q; Cui R; Liu X; Zheng X; Yao Y; Zhao G
    Crit Rev Food Sci Nutr; 2023 Jul; ():1-12. PubMed ID: 37395610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abating biogenic amines and improving the flavor profile of Cantonese soy sauce via co-culturing Tetragenococcus halophilus and Zygosaccharomyces rouxii.
    Qi Q; Huang J; Zhou R; Jin Y; Wu C
    Food Microbiol; 2022 Sep; 106():104056. PubMed ID: 35690450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic and metabolic features of Tetragenococcus halophilus as revealed by pan-genome and transcriptome analyses.
    Chun BH; Han DM; Kim KH; Jeong SE; Park D; Jeon CO
    Food Microbiol; 2019 Oct; 83():36-47. PubMed ID: 31202417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Tetragenococcus strains from sugar thick juice reveals a novel species, Tetragenococcus osmophilus sp. nov., and divides Tetragenococcus halophilus into two subspecies, T. halophilus subsp. halophilus subsp. nov. and T. halophilus subsp. flandriensis subsp. nov.
    Justé A; Van Trappen S; Verreth C; Cleenwerck I; De Vos P; Lievens B; Willems KA
    Int J Syst Evol Microbiol; 2012 Jan; 62(Pt 1):129-137. PubMed ID: 21357458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polysaccharide intercellular adhesin and proper phospholipid composition are important for aggregation in
    Yanagihara A; Matsue K; Kobayashi K; Wakinaka T; Mogi Y; Watanabe J
    Appl Environ Microbiol; 2024 May; 90(5):e0033424. PubMed ID: 38624197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.