These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 37350070)
1. Classification and quantification of sucrose from sugar beet and sugarcane using optical spectroscopy and chemometrics. Eriklioglu H; Ilhan E; Khodasevich M; Korolko D; Manley M; Castillo R; Oztop MH J Food Sci; 2023 Aug; 88(8):3274-3286. PubMed ID: 37350070 [TBL] [Abstract][Full Text] [Related]
2. Effect of quality and origin of technical sucrose solutions on the inclusion of colourants into the sugar crystal matrix. Schlumbach K; Scharfe M; Flöter E J Sci Food Agric; 2018 Jun; 98(8):2953-2963. PubMed ID: 29168562 [TBL] [Abstract][Full Text] [Related]
3. Authentication of the origin of sucrose-based sugar products using quantitative natural abundance (13) C NMR. Monakhova YB; Diehl BW J Sci Food Agric; 2016 Jun; 96(8):2861-6. PubMed ID: 26362834 [TBL] [Abstract][Full Text] [Related]
4. Sensory differences between product matrices made with beet and cane sugar sources. Urbanus BL; Schmidt SJ; Lee SY J Food Sci; 2014 Nov; 79(11):S2354-61. PubMed ID: 25308166 [TBL] [Abstract][Full Text] [Related]
5. [Rapid determination of beet sugar content using near infrared spectroscopy]. Yang Y; Ren J; Zheng XQ; Zhao LY; Li MM Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2728-31. PubMed ID: 25739216 [TBL] [Abstract][Full Text] [Related]
6. A green method for the authentication of sugarcane spirit and prediction of density and alcohol content based on near infrared spectroscopy and chemometric tools. Oliveira S; Duarte E; Gomes M; Nagata N; Fernandes DDS; Veras G Food Res Int; 2023 Aug; 170():112830. PubMed ID: 37316036 [TBL] [Abstract][Full Text] [Related]
8. Determination of sucrose content in sugar beet by portable visible and near-infrared spectroscopy. Pan L; Zhu Q; Lu R; McGrath JM Food Chem; 2015 Jan; 167():264-71. PubMed ID: 25148988 [TBL] [Abstract][Full Text] [Related]
9. Color approach to the analysis of white crystal cane sugar for the detection of solid impurities. Barros NZ; Sperança MA; Pereira FMV J Sci Food Agric; 2022 Jun; 102(8):3400-3404. PubMed ID: 34825362 [TBL] [Abstract][Full Text] [Related]
10. Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics for phenotyping of water-deficit stress tolerance in rice through spectroscopy and chemometrics. Das B; Sahoo RN; Pargal S; Krishna G; Verma R; Chinnusamy V; Sehgal VK; Gupta VK; Dash SK; Swain P Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 192():41-51. PubMed ID: 29126007 [TBL] [Abstract][Full Text] [Related]
11. Does information about sugar source influence consumer liking of products made with beet and cane sugars? Urbanus BL; Schmidt SJ; Lee SY J Food Sci; 2014 Nov; 79(11):S2362-7. PubMed ID: 25308071 [TBL] [Abstract][Full Text] [Related]
12. Application of MOS Gas Sensors Coupled with Chemometrics Methods to Predict the Amount of Sugar and Carbohydrates in Potatoes. Khorramifar A; Rasekh M; Karami H; Covington JA; Derakhshani SM; Ramos J; Gancarz M Molecules; 2022 May; 27(11):. PubMed ID: 35684450 [TBL] [Abstract][Full Text] [Related]
13. Application of segmented analysis via multivariate curve resolution with alternating least squares to Fuentes CA; Öztop MH; Rojas-Rioseco M; Bravo M; Göksu AÖ; Manley M; Castillo RDP Food Chem; 2023 Dec; 428():136817. PubMed ID: 37459678 [TBL] [Abstract][Full Text] [Related]
14. Sensory differences between beet and cane sugar sources. Urbanus BL; Cox GO; Eklund EJ; Ickes CM; Schmidt SJ; Lee SY J Food Sci; 2014 Sep; 79(9):S1763-8. PubMed ID: 25124655 [TBL] [Abstract][Full Text] [Related]
15. Determination of origin and sugars of citrus fruits using genetic algorithm, correspondence analysis and partial least square combined with fiber optic NIR spectroscopy. Tewari JC; Dixit V; Cho BK; Malik KA Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):1119-27. PubMed ID: 18424176 [TBL] [Abstract][Full Text] [Related]
16. Determination of honey adulteration with beet sugar and corn syrup using infrared spectroscopy and genetic-algorithm-based multivariate calibration. Başar B; Özdemir D J Sci Food Agric; 2018 Dec; 98(15):5616-5624. PubMed ID: 29696655 [TBL] [Abstract][Full Text] [Related]
17. Detection of sugar adulterants in apple juice using fourier transform infrared spectroscopy and chemometrics. Kelly JF; Downey G J Agric Food Chem; 2005 May; 53(9):3281-6. PubMed ID: 15853360 [TBL] [Abstract][Full Text] [Related]
18. Discrimination of genetically modified sugar beets based on terahertz spectroscopy. Chen T; Li Z; Yin X; Hu F; Hu C Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():586-90. PubMed ID: 26436847 [TBL] [Abstract][Full Text] [Related]
19. Application of Fourier transform midinfrared spectroscopy to the discrimination between Irish artisanal honey and such honey adulterated with various sugar syrups. Kelly JD; Petisco C; Downey G J Agric Food Chem; 2006 Aug; 54(17):6166-71. PubMed ID: 16910703 [TBL] [Abstract][Full Text] [Related]
20. Quantification of Corn Adulteration in Wet and Dry-Processed Peaberry Ground Roasted Coffees by UV-Vis Spectroscopy and Chemometrics. Yulia M; Suhandy D Molecules; 2021 Oct; 26(20):. PubMed ID: 34684672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]