These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37350397)

  • 1. Vanillin Production Pathways in Alkaline Nitrobenzene Oxidation of Guaiacylglycerol-β-guaiacyl Ether.
    Hayashi T; Hosoya T; Miyafuji H
    J Agric Food Chem; 2023 Jul; 71(26):10124-10132. PubMed ID: 37350397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catabolism of arylglycerol-beta-aryl ethers lignin model compounds by Pseudomonas cepacia 122.
    Odier E; Rolando C
    Biochimie; 1985 Feb; 67(2):191-7. PubMed ID: 3839140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacillus amyloliquefaciens CotA degradation of the lignin model compound guaiacylglycerol-β-guaiacyl ether.
    Yang J; Gao MY; Li M; Li ZZ; Li H; Li HY
    Lett Appl Microbiol; 2018 Nov; 67(5):491-496. PubMed ID: 30091245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective production of bio-based aromatics by aerobic oxidation of native soft wood lignin in tetrabutylammonium hydroxide.
    Hosoya T; Yamamoto K; Miyafuji H; Yamada T
    RSC Adv; 2020 May; 10(33):19199-19210. PubMed ID: 35515466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significant lability of guaiacylglycerol beta-phenacyl ether under alkaline conditions.
    Imai A; Yokoyama T; Matsumoto Y; Meshitsuka G
    J Agric Food Chem; 2007 Oct; 55(22):9043-6. PubMed ID: 17914873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of Vanillin During Lignin Valorization Under Alkaline Oxidation.
    Zhu Y; Liu J; Liao Y; Lv W; Ma L; Wang C
    Top Curr Chem (Cham); 2018 Jul; 376(4):29. PubMed ID: 29967927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of lignin from flax shives as affected by extraction conditions.
    Ross K; Mazza G
    Int J Mol Sci; 2010 Oct; 11(10):4035-50. PubMed ID: 21152318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic degradation of veratrylglycerol-beta-guaiacyl ether and guaiacoxyacetic acid by mixed rumen bacteria.
    Chen W; Supanwong K; Ohmiya K; Shimizu S; Kawakami H
    Appl Environ Microbiol; 1985 Dec; 50(6):1451-6. PubMed ID: 3841472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignin structural variation in hardwood species.
    Santos RB; Capanema EA; Balakshin MY; Chang HM; Jameel H
    J Agric Food Chem; 2012 May; 60(19):4923-30. PubMed ID: 22533315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disassembly of lignin and chemical recovery in supercritical water and p-cresol mixture. Studies on lignin model compounds.
    Okuda K; Ohara S; Umetsu M; Takami S; Adschiri T
    Bioresour Technol; 2008 Apr; 99(6):1846-52. PubMed ID: 17540557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of labelled lignins and veratrylglycerol-beta-guaiacyl ether by Acinetobacter sp.
    Vasudevan N; Mahadevan A
    Ital J Biochem; 1990; 39(5):285-93. PubMed ID: 2128084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of phenolic arylglycerol beta-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an alpha-carbonyl model compound.
    Tuor U; Wariishi H; Schoemaker HE; Gold MH
    Biochemistry; 1992 Jun; 31(21):4986-95. PubMed ID: 1599925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new bacterial dehydrogenase oxidizing the lignin model compound guaiacylglycerol beta-O-4-guaiacyl ether.
    Pelmont J; Barrelle M; Hauteville M; Gamba D; Romdhane M; Dardas A; Beguin C
    Biochimie; 1985 Sep; 67(9):973-86. PubMed ID: 3841290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review on the oxidative catalysis methods of converting lignin into vanillin.
    Xu X; Li P; Zhong Y; Yu J; Miao C; Tong G
    Int J Biol Macromol; 2023 Jul; 243():125203. PubMed ID: 37270116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peroxodicarbonate as a Green Oxidizer for the Selective Degradation of Kraft Lignin into Vanillin.
    Zirbes M; Graßl T; Neuber R; Waldvogel SR
    Angew Chem Int Ed Engl; 2023 Mar; 62(14):e202219217. PubMed ID: 36719064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic and kinetic characterization of a suite of dehydrogenases from a newly isolated bacterium, strain SG61-1L, that catalyze the turnover of guaiacylglycerol-β-guaiacyl ether stereoisomers.
    Palamuru S; Dellas N; Pearce SL; Warden AC; Oakeshott JG; Pandey G
    Appl Environ Microbiol; 2015 Dec; 81(23):8164-76. PubMed ID: 26386069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and characterization of a novel extracellular fungal enzyme that catalyzes the specific and hydrolytic cleavage of lignin guaiacylglycerol beta-aryl ether linkages.
    Otsuka Y; Sonoki T; Ikeda S; Kajita S; Nakamura M; Katayama Y
    Eur J Biochem; 2003 Jun; 270(11):2353-62. PubMed ID: 12755689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of a sensitive UPLC-MS/MS instrumentation and alkaline nitrobenzene oxidation method for the determination of lignin monomers in wheat straw.
    Zheng M; Gu S; Chen J; Luo Y; Li W; Ni J; Li Y; Wang Z
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jun; 1055-1056():178-184. PubMed ID: 28494351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic oxidation of lignin model compounds by simple inorganic complexes.
    Huynh VB
    Biochem Biophys Res Commun; 1986 Sep; 139(3):1104-10. PubMed ID: 3767993
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.