These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37350397)

  • 21. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects.
    Tarabanko VE; Tarabanko N
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29140301
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cleaving the β--O--4 bonds of lignin model compounds in an acidic ionic liquid, 1-H-3-methylimidazolium chloride: an optional strategy for the degradation of lignin.
    Jia S; Cox BJ; Guo X; Zhang ZC; Ekerdt JG
    ChemSusChem; 2010 Sep; 3(9):1078-84. PubMed ID: 20677206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in chemical structures of wheat straw auto-hydrolysis lignin by 3-hydroxyanthranilic acid as a laccase mediator.
    Feng N; Guo L; Ren H; Xie Y; Jiang Z; Ek M; Zhai H
    Int J Biol Macromol; 2019 Feb; 122():210-215. PubMed ID: 30365991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural insights into the alkali lignins involving the formation and transformation of arylglycerols and enol ethers.
    Zhao C; Li S; Zhang H; Yue F; Lu F
    Int J Biol Macromol; 2020 Jun; 152():411-417. PubMed ID: 32097737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vibrational spectra of guaiacylglycerol-β-guaiacyl ether: experiment and theory.
    Su TF; Huang R; Su YQ; Zhao GZ; Wu DY; Wang JA; Gong CR; Xu CL
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():456-63. PubMed ID: 25576943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural features and antioxidant behavior of lignins successively extracted from ginkgo shells (Ginkgo biloba L).
    Jiang B; Chen H; Zhao H; Wu W; Jin Y
    Int J Biol Macromol; 2020 Nov; 163():694-701. PubMed ID: 32645494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolism of Radiolabeled beta-Guaiacyl Ether-Linked Lignin Dimeric Compounds by Phanerochaete chrysosporium.
    Weinstein DA; Krisnangkura K; Mayfield MB; Gold MH
    Appl Environ Microbiol; 1980 Mar; 39(3):535-40. PubMed ID: 16345527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lignin content versus syringyl to guaiacyl ratio amongst poplars.
    Bose SK; Francis RC; Govender M; Bush T; Spark A
    Bioresour Technol; 2009 Feb; 100(4):1628-33. PubMed ID: 18954979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural characterization of lignin from grape stalks (Vitis vinifera L.).
    Prozil SO; Evtuguin DV; Silva AM; Lopes LP
    J Agric Food Chem; 2014 Jun; 62(24):5420-8. PubMed ID: 24892733
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Mn(II) on reactions catalyzed by lignin peroxidase from Phanerochaete chrysosporium.
    Bono JJ; Goulas P; Boe JF; Portet N; Seris JL
    Eur J Biochem; 1990 Aug; 192(1):189-93. PubMed ID: 2401291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combination of six enzymes of a marine Novosphingobium converts the stereoisomers of β-O-4 lignin model dimers into the respective monomers.
    Ohta Y; Nishi S; Hasegawa R; Hatada Y
    Sci Rep; 2015 Oct; 5():15105. PubMed ID: 26477321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The biomimetic oxidation of beta-1, beta-0-4, beta-5, and biphenyl lignin model compounds by synthetic iron porphyrins.
    Cui F; Dolphin D
    Bioorg Med Chem; 1994 Jul; 2(7):735-42. PubMed ID: 7858983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhomogeneities in the chemical structure of sugarcane bagasse lignin.
    Sun JX; Sun XF; Sun RC; Fowler P; Baird MS
    J Agric Food Chem; 2003 Nov; 51(23):6719-25. PubMed ID: 14582966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A group of sequence-related sphingomonad enzymes catalyzes cleavage of β-aryl ether linkages in lignin β-guaiacyl and β-syringyl ether dimers.
    Gall DL; Ralph J; Donohue TJ; Noguera DR
    Environ Sci Technol; 2014 Oct; 48(20):12454-63. PubMed ID: 25232892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of Monomeric Aromatic Compounds from Oil Palm Empty Fruit Bunch Fiber Lignin by Chemical and Enzymatic Methods.
    Tang PL; Hassan O; Maskat MY; Badri K
    Biomed Res Int; 2015; 2015():891539. PubMed ID: 26798644
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NMR Assignment for Diaryl Ether Structures (4-O-5 Structures) in Pine Wood Lignin.
    Li Y; Akiyama T; Yokoyama T; Matsumoto Y
    Biomacromolecules; 2016 Jun; 17(6):1921-9. PubMed ID: 27077315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The use of sugar beet pulp lignin for the production of vanillin.
    Aarabi A; Mizani M; Honarvar M
    Int J Biol Macromol; 2017 Jan; 94(Pt A):345-354. PubMed ID: 27717789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hardwood and softwood lignins from sulfite liquors: Structural characterization and valorization through depolymerization.
    Casimiro FM; Costa CAE; Vega-Aguilar C; Rodrigues AE
    Int J Biol Macromol; 2022 Aug; 215():272-279. PubMed ID: 35718152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols.
    Voitl T; Rudolf von Rohr P
    ChemSusChem; 2008; 1(8-9):763-9. PubMed ID: 18688829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lignin peroxidase L3 from Phlebia radiata. Pre-steady-state and steady-state studies with veratryl alcohol and a non-phenolic lignin model compound 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol.
    Lundell T; Wever R; Floris R; Harvey P; Hatakka A; Brunow G; Schoemaker H
    Eur J Biochem; 1993 Feb; 211(3):391-402. PubMed ID: 8436103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.