These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37350455)

  • 1. Effect of Polypeptide Complex Coacervate Microenvironment on Protonation of a Guest Molecule.
    Choi S; Knoerdel AR; Sing CE; Keating CD
    J Phys Chem B; 2023 Jul; 127(26):5978-5991. PubMed ID: 37350455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prebiotically-relevant low polyion multivalency can improve functionality of membraneless compartments.
    Cakmak FP; Choi S; Meyer MO; Bevilacqua PC; Keating CD
    Nat Commun; 2020 Nov; 11(1):5949. PubMed ID: 33230101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-Dependent Complex Coacervation of Engineered Elastin-like Polypeptide and Hyaluronic Acid Polyelectrolytes.
    Tang JD; Caliari SR; Lampe KJ
    Biomacromolecules; 2018 Oct; 19(10):3925-3935. PubMed ID: 30185029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments.
    Smokers IBA; Visser BS; Slootbeek AD; Huck WTS; Spruijt E
    Acc Chem Res; 2024 Jul; 57(14):1885-1895. PubMed ID: 38968602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-programmed enzyme phase separation and multiphase coacervate droplet organization.
    Karoui H; Seck MJ; Martin N
    Chem Sci; 2021 Jan; 12(8):2794-2802. PubMed ID: 34164043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composition and structure of whey protein/gum arabic coacervates.
    Weinbreck F; Tromp RH; de Kruif CG
    Biomacromolecules; 2004; 5(4):1437-45. PubMed ID: 15244462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex coacervates as artificial membraneless organelles and protocells.
    Deng NN
    Biomicrofluidics; 2020 Sep; 14(5):051301. PubMed ID: 32922586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-Controlled Coacervate-Membrane Interactions within Liposomes.
    Last MGF; Deshpande S; Dekker C
    ACS Nano; 2020 Apr; 14(4):4487-4498. PubMed ID: 32239914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small Amphiphile-Based Coacervation.
    Xiao X; Jia L; Huang J; Lin Y; Qiao Y
    Chem Asian J; 2022 Dec; 17(23):e202200938. PubMed ID: 36219462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capturing coacervate formation and protein partition by molecular dynamics simulation.
    Liu Y; Wang X; Wan Z; Ngai T; Tse YS
    Chem Sci; 2023 Feb; 14(5):1168-1175. PubMed ID: 36756326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequestration of Methylene Blue into Polyelectrolyte Complex Coacervates.
    Zhao M; Zacharia NS
    Macromol Rapid Commun; 2016 Aug; 37(15):1249-55. PubMed ID: 27336461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyamine/Nucleotide Coacervates Provide Strong Compartmentalization of Mg²⁺, Nucleotides, and RNA.
    Frankel EA; Bevilacqua PC; Keating CD
    Langmuir; 2016 Mar; 32(8):2041-9. PubMed ID: 26844692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of small molecules on the phase behavior and coacervation of aqueous solutions of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrene sulfonate).
    Huang S; Zhao M; Dawadi MB; Cai Y; Lapitsky Y; Modarelli DA; Zacharia NS
    J Colloid Interface Sci; 2018 May; 518():216-224. PubMed ID: 29459301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex coacervates obtained from peptide leucine and gum arabic: formation and characterization.
    Gulão Eda S; de Souza CJ; Andrade CT; Garcia-Rojas EE
    Food Chem; 2016 Mar; 194():680-6. PubMed ID: 26471607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible photocontrol of DNA coacervation.
    Lafon S; Martin N
    Methods Enzymol; 2021; 646():329-351. PubMed ID: 33453931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of ion pairs on coacervate-driven self-assembly of block polyelectrolytes.
    Jiang J; Chen EQ; Yang S
    J Chem Phys; 2021 Apr; 154(14):144903. PubMed ID: 33858167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding How Coacervates Drive Reversible Small Molecule Reactions to Promote Molecular Complexity.
    Jacobs MI; Jira ER; Schroeder CM
    Langmuir; 2021 Dec; 37(49):14323-14335. PubMed ID: 34856104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient formation of multi-phase droplets caused by the addition of a folded protein into complex coacervates with an oppositely charged surface relative to the protein.
    Sakakibara N; Ura T; Mikawa T; Sugai H; Shiraki K
    Soft Matter; 2023 Jun; 19(25):4642-4650. PubMed ID: 37291907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide-based coacervates as biomimetic protocells.
    Abbas M; Lipiński WP; Wang J; Spruijt E
    Chem Soc Rev; 2021 Mar; 50(6):3690-3705. PubMed ID: 33616129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the Coacervate Microdroplet Interface via Polyelectrolyte and Surfactant Complexation.
    Yin C; Lin Z; Jiang X; Martin N; Tian L
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):27447-27456. PubMed ID: 37272663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.