These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 37350514)

  • 1. Understanding Solid-State Photochemical Energy Storage in Polymers with Azobenzene Side Groups.
    Wallace C; Griffiths K; Dale BL; Roberts S; Parsons J; Griffin JM; Görtz V
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31787-31794. PubMed ID: 37350514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design.
    Zhang L; Liu H; Du Q; Zhang G; Zhu S; Wu Z; Luo X
    Small; 2023 Mar; 19(10):e2206623. PubMed ID: 36534833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.
    Cho EN; Zhitomirsky D; Han GG; Liu Y; Grossman JC
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8679-8687. PubMed ID: 28234453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar-Thermal Energy Conversion and Storage Using Photoresponsive Azobenzene-Containing Polymers.
    Wu S; Butt HJ
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900413. PubMed ID: 31737964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Azobenzene-based solar thermal fuels: design, properties, and applications.
    Dong L; Feng Y; Wang L; Feng W
    Chem Soc Rev; 2018 Oct; 47(19):7339-7368. PubMed ID: 30168543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Photoresponsive Poly(meth)acrylates Bearing Azobenzene Moieties Obtained via ATRP Polymerization Exhibiting Liquid-Crystalline Behavior.
    Cieciórski P; Majewski PW; Megiel E
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34209057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site Selectivity of Peptoids as Azobenzene Scaffold for Molecular Solar Thermal Energy Storage.
    Tassignon B; Wang Z; Galanti A; De Winter J; Samorì P; Cornil J; Moth-Poulsen K; Gerbaux P
    Chemistry; 2023 Dec; 29(70):e202303168. PubMed ID: 37796081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for Incorporating Graphene Oxides and Quantum Dots into Photoresponsive Azobenzenes for Photonics and Thermal Applications.
    Bokare A; Arif J; Erogbogbo F
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-Soluble Azobenzene-Based Solar Thermal Fuels with Improved Long-Term Energy Storage and Energy Density.
    Chen H; Yang C; Ren H; Zhang W; Cui X; Tang Q
    ACS Appl Mater Interfaces; 2024 Dec; 16(49):66837-66845. PubMed ID: 37944917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoresponsive Carbon-Azobenzene Hybrids: A Promising Material for Energy Devices.
    Baby A; John AM; Balakrishnan SP
    Chemphyschem; 2023 Mar; 24(6):e202200676. PubMed ID: 36445807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Azobenzene-Based Solar Thermal Fuels: A Review.
    Zhang B; Feng Y; Feng W
    Nanomicro Lett; 2022 Jun; 14(1):138. PubMed ID: 35767090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic limits to energy conversion in solar thermal fuels.
    Strubbe DA; Grossman JC
    J Phys Condens Matter; 2019 Jan; 31(3):034002. PubMed ID: 30523877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermolecular London Dispersion Interactions of Azobenzene Switches for Tuning Molecular Solar Thermal Energy Storage Systems.
    Kunz A; Heindl AH; Dreos A; Wang Z; Moth-Poulsen K; Becker J; Wegner HA
    Chempluschem; 2019 Aug; 84(8):1145-1148. PubMed ID: 31943965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformal Electroplating of Azobenzene-Based Solar Thermal Fuels onto Large-Area and Fiber Geometries.
    Zhitomirsky D; Grossman JC
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26319-26325. PubMed ID: 27611884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular Cation-π Interaction Enhances Molecular Solar Thermal Fuel.
    Song T; Lei H; Cai F; Kang Y; Yu H; Zhang L
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1940-1949. PubMed ID: 34928571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient solid-state photoswitching of methoxyazobenzene in a metal-organic framework for thermal energy storage.
    Griffiths K; Halcovitch NR; Griffin JM
    Chem Sci; 2022 Mar; 13(10):3014-3019. PubMed ID: 35382460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of Norbornadiene/Quadricyclane Photoswitches for Molecular Solar Thermal Energy Storage Applications.
    Orrego-Hernández J; Dreos A; Moth-Poulsen K
    Acc Chem Res; 2020 Aug; 53(8):1478-1487. PubMed ID: 32662627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage.
    Durgun E; Grossman JC
    J Phys Chem Lett; 2013 Mar; 4(6):854-60. PubMed ID: 26291346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Innovative Azobenzene-Based Photothermal Fabric with Excellent Heat Release Performance for Wearable Thermal Management Device.
    Wu Y; Dong L; Tang S; Liu X; Han Y; Zhang S; Liu K; Feng W
    Small; 2024 Dec; 20(49):e2404310. PubMed ID: 39252649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoinduced Birefringence and Liquid Crystal Orientation on Polymers with Different Azobenzene Content in the Main Chain.
    Tkachenko IM; Kurioz YI; Kravchuk RM; Kobzar YL; Litoshenko DV; Glushchenko AV; Shevchenko VV; Nazarenko VG
    ACS Appl Mater Interfaces; 2024 Oct; 16(39):52945-52957. PubMed ID: 39287937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.