These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37350575)

  • 21. Complex shape deformations of homogeneous poly(N-isopropylacrylamide)/graphene oxide hydrogels programmed by local NIR irradiation.
    Peng X; Liu T; Jiao C; Wu Y; Chen N; Wang H
    J Mater Chem B; 2017 Oct; 5(39):7997-8003. PubMed ID: 32264200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Programmable Anisotropic Hydrogels with Localized Photothermal/Magnetic Responsive Properties.
    Chen H; Zhang X; Shang L; Su Z
    Adv Sci (Weinh); 2022 Sep; 9(26):e2202173. PubMed ID: 35859231
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 4D Printing of Robust Hydrogels Consisted of Agarose Nanofibers and Polyacrylamide.
    Guo J; Zhang R; Zhang L; Cao X
    ACS Macro Lett; 2018 Apr; 7(4):442-446. PubMed ID: 35619340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermo-responsive in-situ forming hydrogels as barriers to prevent post-operative peritendinous adhesion.
    Chou PY; Chen SH; Chen CH; Chen SH; Fong YT; Chen JP
    Acta Biomater; 2017 Nov; 63():85-95. PubMed ID: 28919215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Significant advancements of 4D printing in the field of orthopaedics.
    Javaid M; Haleem A
    J Clin Orthop Trauma; 2020 Jul; 11(Suppl 4):S485-S490. PubMed ID: 32774016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 4D Printing of Body Temperature-Responsive Hydrogels Based on Poly(acrylic acid) with Shape-Memory and Self-Healing Abilities.
    Abdullah T; Okay O
    ACS Appl Bio Mater; 2023 Feb; 6(2):703-711. PubMed ID: 36700540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preliminary study on alginate/NIPAM hydrogel-based soft microrobot for controlled drug delivery using electromagnetic actuation and near-infrared stimulus.
    Lee H; Choi H; Lee M; Park S
    Biomed Microdevices; 2018 Nov; 20(4):103. PubMed ID: 30535774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-Dimensional MoO
    Sun Z; Wei C; Liu W; Liu H; Liu J; Hao R; Huang M; He S
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33404-33416. PubMed ID: 34247475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment.
    Zhang M; Hu W; Cai C; Wu Y; Li J; Dong S
    Mater Today Bio; 2022 Mar; 14():100223. PubMed ID: 35243298
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decoupled pH- and Thermo-Responsive Injectable Chitosan/PNIPAM Hydrogel via Thiol-Ene Click Chemistry for Potential Applications in Tissue Engineering.
    Ding H; Li B; Liu Z; Liu G; Pu S; Feng Y; Jia D; Zhou Y
    Adv Healthc Mater; 2020 Jul; 9(14):e2000454. PubMed ID: 32548983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 4D Printing Applications in the Development of Smart Cardiovascular Implants.
    Kabirian F; Mela P; Heying R
    Front Bioeng Biotechnol; 2022; 10():873453. PubMed ID: 35694223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Artificial Intelligence-Empowered 3D and 4D Printing Technologies toward Smarter Biomedical Materials and Approaches.
    Pugliese R; Regondi S
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multifunctional 3D-Printed Pollen Grain-Inspired Hydrogel Microrobots for On-Demand Anchoring and Cargo Delivery.
    Lee YW; Kim JK; Bozuyuk U; Dogan NO; Khan MTA; Shiva A; Wild AM; Sitti M
    Adv Mater; 2023 Mar; 35(10):e2209812. PubMed ID: 36585849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Power Compensation Strategy for Achieving Homogeneous Microstructures for 4D Printing Shape-Adaptive PNIPAM Hydrogels: Out-of-Plane Variations.
    Tan L; Lee H; Fang L; Cappelleri DJ
    Gels; 2022 Dec; 8(12):. PubMed ID: 36547351
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid and Multimaterial 4D Printing of Shape-Morphing Micromachines for Narrow Micronetworks Traversing.
    Xin C; Jin D; Li R; Wang D; Ren Z; Liu B; Chen C; Li L; Liu S; Xu B; Zhang Y; Hu Y; Li J; Zhang L; Wu D; Chu J
    Small; 2022 Sep; 18(37):e2202272. PubMed ID: 35983631
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Near-Infrared Light-Driven Shape-Programmable Hydrogel Actuators Loaded with Metal-Organic Frameworks.
    Zhang X; Xue P; Yang X; Valenzuela C; Chen Y; Lv P; Wang Z; Wang L; Xu X
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11834-11841. PubMed ID: 35192332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Programmable 4D Printing of Photoactive Shape Memory Composite Structures.
    Deng Y; Zhang F; Jiang M; Liu Y; Yuan H; Leng J
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42568-42577. PubMed ID: 36097702
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Directed Printing and Reconfiguration of Thermoresponsive Silica-pNIPAM Nanocomposites.
    Guo Y; Belgodere JA; Ma Y; Jung JP; Bharti B
    Macromol Rapid Commun; 2019 Jul; 40(13):e1900191. PubMed ID: 31162768
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polyethylene Glycol-Chitosan Oligosaccharide-Coated Superparamagnetic Iron Oxide Nanoparticles: A Novel Drug Delivery System for Curcumin Diglutaric Acid.
    Sorasitthiyanukarn FN; Muangnoi C; Thaweesest W; Bhuket PRN; Jantaratana P; Rojsitthisak P; Rojsitthisak P
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31906490
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advances in 4D printing: from stimulation to simulation.
    Pingale P; Dawre S; Dhapte-Pawar V; Dhas N; Rajput A
    Drug Deliv Transl Res; 2023 Jan; 13(1):164-188. PubMed ID: 35751000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.