BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37350842)

  • 1. Correlated missing linker defects increase thermal conductivity in metal-organic framework UiO-66.
    Islamov M; Boone P; Babaei H; McGaughey AJH; Wilmer CE
    Chem Sci; 2023 Jun; 14(24):6592-6600. PubMed ID: 37350842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Missing Linker Defects on the Thermal Conductivity of Metal-Organic Framework HKUST-1.
    Islamov M; Babaei H; Wilmer CE
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56172-56177. PubMed ID: 33275844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic Investigations of the Transition between Framework Topologies in Ce/Zr-MOFs.
    Jacobsen J; Reinsch H; Stock N
    Inorg Chem; 2018 Oct; 57(20):12820-12826. PubMed ID: 30256108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption.
    Wu H; Chua YS; Krungleviciute V; Tyagi M; Chen P; Yildirim T; Zhou W
    J Am Chem Soc; 2013 Jul; 135(28):10525-32. PubMed ID: 23808838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superprotonic Conductivity of UiO-66 with Missing-Linker Defects in Aqua-Ammonia Vapor.
    Liu QQ; Liu SS; Liu XF; Xu XJ; Dong XY; Zhang HJ; Zang SQ
    Inorg Chem; 2022 Feb; 61(8):3406-3411. PubMed ID: 35170960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Organic Framework (MOF) Defects under Control: Insights into the Missing Linker Sites and Their Implication in the Reactivity of Zirconium-Based Frameworks.
    Gutov OV; González Hevia M; Escudero-Adán EC; Shafir A
    Inorg Chem; 2015 Sep; 54(17):8396-400. PubMed ID: 26291237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating correlated defects in metal organic frameworks using theory-guided inelastic neutron scattering spectroscopy.
    Cavalcante LSR; Dettmann MA; Sours T; Yang D; Daemen LL; Gates BC; Kulkarni AR; Moulé AJ
    Mater Horiz; 2023 Jan; 10(1):187-196. PubMed ID: 36330997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creation of Exclusive Artificial Cluster Defects by Selective Metal Removal in the (Zn, Zr) Mixed-Metal UiO-66.
    Feng X; Jena HS; Krishnaraj C; Arenas-Esteban D; Leus K; Wang G; Sun J; Rüscher M; Timoshenko J; Roldan Cuenya B; Bals S; Voort PV
    J Am Chem Soc; 2021 Dec; 143(51):21511-21518. PubMed ID: 34872251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging defects and their evolution in a metal-organic framework at sub-unit-cell resolution.
    Liu L; Chen Z; Wang J; Zhang D; Zhu Y; Ling S; Huang KW; Belmabkhout Y; Adil K; Zhang Y; Slater B; Eddaoudi M; Han Y
    Nat Chem; 2019 Jul; 11(7):622-628. PubMed ID: 31086300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the Impact of the Linker Length on Heat Transport in Metal-Organic Frameworks.
    Wieser S; Kamencek T; Schmid R; Bedoya-Martínez N; Zojer E
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying UiO-67 Metal-Organic Framework Defects and Binding Sites through Ammonia Adsorption.
    Swaroopa Datta Devulapalli V; McDonnell RP; Ruffley JP; Shukla PB; Luo TY; De Souza ML; Das P; Rosi NL; Karl Johnson J; Borguet E
    ChemSusChem; 2022 Jan; 15(1):e202102217. PubMed ID: 34725931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-Scale Synthesis of Monodisperse UiO-66 Crystals with Tunable Sizes and Missing Linker Defects via Acid/Base Co-Modulation.
    Zhao Y; Zhang Q; Li Y; Zhang R; Lu G
    ACS Appl Mater Interfaces; 2017 May; 9(17):15079-15085. PubMed ID: 28425280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linker depletion for missing cluster defects in non-UiO metal-organic frameworks.
    Lázaro IA; Almora-Barrios N; Tatay S; Popescu C; Martí-Gastaldo C
    Chem Sci; 2021 Sep; 12(35):11839-11844. PubMed ID: 34659723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the Wettability of Metal-Organic Frameworks via Defect Engineering for Efficient Oil/Water Separation.
    Huang Y; Jiao Y; Chen T; Gong Y; Wang S; Liu Y; Sholl DS; Walton KS
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34413-34422. PubMed ID: 32551472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water Bridges Substitute for Defects in Amine-Functionalized UiO-66, Boosting CO
    Hernandez AF; Impastato RK; Hossain MI; Rabideau BD; Glover TG
    Langmuir; 2021 Sep; 37(35):10439-10449. PubMed ID: 34427450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge Transport in Zirconium-Based Metal-Organic Frameworks.
    Kung CW; Goswami S; Hod I; Wang TC; Duan J; Farha OK; Hupp JT
    Acc Chem Res; 2020 Jun; 53(6):1187-1195. PubMed ID: 32401008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a Highly Defective Stable UiO-66 with Tunable Lewis- Brønsted Acidity: The Role of the Hemilabile Linker.
    Feng X; Hajek J; Jena HS; Wang G; Veerapandian SKP; Morent R; De Geyter N; Leyssens K; Hoffman AEJ; Meynen V; Marquez C; De Vos DE; Van Speybroeck V; Leus K; Van Der Voort P
    J Am Chem Soc; 2020 Feb; 142(6):3174-3183. PubMed ID: 31971786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrational spectroscopy investigation of defects in Zr- and Hf-UiO-66.
    Yost BT; Gibbons B; Wilson A; Morris AJ; McNeil LE
    RSC Adv; 2022 Aug; 12(35):22440-22447. PubMed ID: 36105986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Missing Linkers: An Alternative Pathway to UiO-66 Electronic Structure Engineering.
    De Vos A; Hendrickx K; Van Der Voort P; Van Speybroeck V; Lejaeghere K
    Chem Mater; 2017 Apr; 29(7):3006-3019. PubMed ID: 28413260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the molecular diffusion in MOFs with the acidity of monocarboxylate modulators.
    Lázaro IA; Popescu C; Cirujano FG
    Dalton Trans; 2021 Aug; 50(32):11291-11299. PubMed ID: 34342329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.