These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37350869)

  • 1. Can Race-sensitive Biomedical Embeddings Improve Healthcare Predictive Models?
    Liu H; Moustafa-Fahmy N; Ta C; Weng C
    AMIA Jt Summits Transl Sci Proc; 2023; 2023():388-397. PubMed ID: 37350869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gender-sensitive word embeddings for healthcare.
    Agmon S; Gillis P; Horvitz E; Radinsky K
    J Am Med Inform Assoc; 2022 Jan; 29(3):415-423. PubMed ID: 34918101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knowledge Graph Embeddings for ICU readmission prediction.
    Carvalho RMS; Oliveira D; Pesquita C
    BMC Med Inform Decis Mak; 2023 Jan; 23(1):12. PubMed ID: 36658526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Word embeddings trained on published case reports are lightweight, effective for clinical tasks, and free of protected health information.
    Flamholz ZN; Crane-Droesch A; Ungar LH; Weissman GE
    J Biomed Inform; 2022 Jan; 125():103971. PubMed ID: 34920127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating Biomedical Word Embeddings for Vocabulary Alignment at Scale in the UMLS Metathesaurus Using Siamese Networks.
    Bajaj G; Nguyen V; Wijesiriwardene T; Yip HY; Javangula V; Parthasarathy S; Sheth A; Bodenreider O
    Proc Conf Assoc Comput Linguist Meet; 2022 May; 2022():82-87. PubMed ID: 36093038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BioConceptVec: Creating and evaluating literature-based biomedical concept embeddings on a large scale.
    Chen Q; Lee K; Yan S; Kim S; Wei CH; Lu Z
    PLoS Comput Biol; 2020 Apr; 16(4):e1007617. PubMed ID: 32324731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction.
    Rasmy L; Xiang Y; Xie Z; Tao C; Zhi D
    NPJ Digit Med; 2021 May; 4(1):86. PubMed ID: 34017034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiview Incomplete Knowledge Graph Integration with application to cross-institutional EHR data harmonization.
    Zhou D; Gan Z; Shi X; Patwari A; Rush E; Bonzel CL; Panickan VA; Hong C; Ho YL; Cai T; Costa L; Li X; Castro VM; Murphy SN; Brat G; Weber G; Avillach P; Gaziano JM; Cho K; Liao KP; Lu J; Cai T
    J Biomed Inform; 2022 Sep; 133():104147. PubMed ID: 35872266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explainable time-series deep learning models for the prediction of mortality, prolonged length of stay and 30-day readmission in intensive care patients.
    Deng Y; Liu S; Wang Z; Wang Y; Jiang Y; Liu B
    Front Med (Lausanne); 2022; 9():933037. PubMed ID: 36250092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing clinical concept extraction with contextual embeddings.
    Si Y; Wang J; Xu H; Roberts K
    J Am Med Inform Assoc; 2019 Nov; 26(11):1297-1304. PubMed ID: 31265066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of Clinicians' Ability to Predict the Need for Intensive Care Unit Readmission.
    Rojas JC; Lyons PG; Jiang T; Kilaru M; McCauley L; Picart J; Carey KA; Edelson DP; Arora VM; Churpek MM
    Ann Am Thorac Soc; 2020 Jul; 17(7):847-853. PubMed ID: 32125877
    [No Abstract]   [Full Text] [Related]  

  • 13. Deep learning with sentence embeddings pre-trained on biomedical corpora improves the performance of finding similar sentences in electronic medical records.
    Chen Q; Du J; Kim S; Wilbur WJ; Lu Z
    BMC Med Inform Decis Mak; 2020 Apr; 20(Suppl 1):73. PubMed ID: 32349758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks.
    Alachram H; Chereda H; Beißbarth T; Wingender E; Stegmaier P
    PLoS One; 2021; 16(10):e0258623. PubMed ID: 34653224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting hierarchy in medical concept embedding.
    Finch A; Crowell A; Bhatia M; Parameshwarappa P; Chang YC; Martinez J; Horberg M
    JAMIA Open; 2021 Jan; 4(1):ooab022. PubMed ID: 33748691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and evaluation of novel ophthalmology domain-specific neural word embeddings to predict visual prognosis.
    Wang S; Tseng B; Hernandez-Boussard T
    Int J Med Inform; 2021 Jun; 150():104464. PubMed ID: 33892445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Intensive Care Unit Length of Stay and Mortality Using Patient Vital Signs: Machine Learning Model Development and Validation.
    Alghatani K; Ammar N; Rezgui A; Shaban-Nejad A
    JMIR Med Inform; 2021 May; 9(5):e21347. PubMed ID: 33949961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Privacy-Preserving Predictive Modeling: Harmonization of Contextual Embeddings From Different Sources.
    Huang Y; Lee J; Wang S; Sun J; Liu H; Jiang X
    JMIR Med Inform; 2018 May; 6(2):e33. PubMed ID: 29769172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling sentiments based on objectivity and subjectivity with self-attention mechanisms.
    Ng H; Chia GJW; Yap TTV; Goh VT
    F1000Res; 2021; 10():1001. PubMed ID: 35646327
    [No Abstract]   [Full Text] [Related]  

  • 20. Improved biomedical word embeddings in the transformer era.
    Noh J; Kavuluru R
    J Biomed Inform; 2021 Aug; 120():103867. PubMed ID: 34284119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.