These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
365 related articles for article (PubMed ID: 37351512)
1. PARP-1: a critical regulator in radioprotection and radiotherapy-mechanisms, challenges, and therapeutic opportunities. Li WH; Wang F; Song GY; Yu QH; Du RP; Xu P Front Pharmacol; 2023; 14():1198948. PubMed ID: 37351512 [No Abstract] [Full Text] [Related]
3. Poly(ADP-ribose) polymerase-1 is a positive regulator of the p53-mediated G1 arrest response following ionizing radiation. Wieler S; Gagné JP; Vaziri H; Poirier GG; Benchimol S J Biol Chem; 2003 May; 278(21):18914-21. PubMed ID: 12642583 [TBL] [Abstract][Full Text] [Related]
4. Poly (adp-ribose) polymerase inhibitors as potential therapeutic agents in stroke and neurotrauma. Komjáti K; Besson VC; Szabó C Curr Drug Targets CNS Neurol Disord; 2005 Apr; 4(2):179-94. PubMed ID: 15857303 [TBL] [Abstract][Full Text] [Related]
5. Poly(ADP-Ribose) polymerase-1 and DNA-dependent protein kinase have equivalent roles in double strand break repair following ionizing radiation. Mitchell J; Smith GC; Curtin NJ Int J Radiat Oncol Biol Phys; 2009 Dec; 75(5):1520-7. PubMed ID: 19931734 [TBL] [Abstract][Full Text] [Related]
6. PARP-1 inhibition induces a late increase in the level of reactive oxygen species in cells after ionizing radiation. Cieślar-Pobuda A; Saenko Y; Rzeszowska-Wolny J Mutat Res; 2012 Apr; 732(1-2):9-15. PubMed ID: 22321899 [TBL] [Abstract][Full Text] [Related]
7. Flavonoids from Xu SJ; Wang X; Wang TY; Lin ZZ; Hu YJ; Huang ZL; Yang XJ; Xu P Aging (Albany NY); 2020 Aug; 12(16):16368-16389. PubMed ID: 32862153 [TBL] [Abstract][Full Text] [Related]
8. Effect of p53 activity on the sensitivity of human glioblastoma cells to PARP-1 inhibitor in combination with topoisomerase I inhibitor or radiation. Sabbatino F; Fusciello C; Somma D; Pacelli R; Poudel R; Pepin D; Leonardi A; Carlomagno C; Della Vittoria Scarpati G; Ferrone S; Pepe S Cytometry A; 2014 Nov; 85(11):953-61. PubMed ID: 25182801 [TBL] [Abstract][Full Text] [Related]
9. Poly(ADP-ribose) polymerase (PARP)-1-independent apoptosis-inducing factor (AIF) release and cell death are induced by eleostearic acid and blocked by alpha-tocopherol and MEK inhibition. Kondo K; Obitsu S; Ohta S; Matsunami K; Otsuka H; Teshima R J Biol Chem; 2010 Apr; 285(17):13079-91. PubMed ID: 20177052 [TBL] [Abstract][Full Text] [Related]
10. PARP inhibitors: new partners in the therapy of cancer and inflammatory diseases. Peralta-Leal A; Rodríguez-Vargas JM; Aguilar-Quesada R; Rodríguez MI; Linares JL; de Almodóvar MR; Oliver FJ Free Radic Biol Med; 2009 Jul; 47(1):13-26. PubMed ID: 19362586 [TBL] [Abstract][Full Text] [Related]
11. Poly(ADP-ribose) polymerase, a major determinant of early cell response to ionizing radiation. Fernet M; Ponette V; Deniaud-Alexandre E; Ménissier-De Murcia J; De Murcia G; Giocanti N; Megnin-Chanet F; Favaudon V Int J Radiat Biol; 2000 Dec; 76(12):1621-9. PubMed ID: 11133044 [TBL] [Abstract][Full Text] [Related]
12. Structure and function of poly(ADP-ribose) polymerase-1: role in oxidative stress-related pathologies. Virág L Curr Vasc Pharmacol; 2005 Jul; 3(3):209-14. PubMed ID: 16026317 [TBL] [Abstract][Full Text] [Related]
13. Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders. Henning RJ; Bourgeois M; Harbison RD Cardiovasc Toxicol; 2018 Dec; 18(6):493-506. PubMed ID: 29968072 [TBL] [Abstract][Full Text] [Related]
14. Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release. Park MT; Kim MJ; Kang YH; Choi SY; Lee JH; Choi JA; Kang CM; Cho CK; Kang S; Bae S; Lee YS; Chung HY; Lee SJ Blood; 2005 Feb; 105(4):1724-33. PubMed ID: 15486061 [TBL] [Abstract][Full Text] [Related]
15. Critical role of the automodification of poly(ADP-ribose) polymerase-1 in nuclear factor-kappaB-dependent gene expression in primary cultured mouse glial cells. Nakajima H; Nagaso H; Kakui N; Ishikawa M; Hiranuma T; Hoshiko S J Biol Chem; 2004 Oct; 279(41):42774-86. PubMed ID: 15302869 [TBL] [Abstract][Full Text] [Related]
16. Modulating poly (ADP-ribose) polymerase activity: potential for the prevention and therapy of pathogenic situations involving DNA damage and oxidative stress. Decker P; Muller S Curr Pharm Biotechnol; 2002 Sep; 3(3):275-83. PubMed ID: 12164482 [TBL] [Abstract][Full Text] [Related]
17. Effects of novel inhibitors of poly(ADP-ribose) polymerase-1 and the DNA-dependent protein kinase on enzyme activities and DNA repair. Veuger SJ; Curtin NJ; Smith GC; Durkacz BW Oncogene; 2004 Sep; 23(44):7322-9. PubMed ID: 15286704 [TBL] [Abstract][Full Text] [Related]
18. Poly(ADP-ribose)polymerase-1 (PARP-1) in carcinogenesis: potential role of PARP inhibitors in cancer treatment. Peralta-Leal A; Rodríguez MI; Oliver FJ Clin Transl Oncol; 2008 Jun; 10(6):318-23. PubMed ID: 18558578 [TBL] [Abstract][Full Text] [Related]
19. Methylmercury induced apoptosis of human neuroblastoma cells through the reactive oxygen species mediated caspase and poly ADP-ribose polymerase/apoptosis-inducing factor dependent pathways. Hou S; Zhang X; Ning X; Wu H; Li X; Ma K; Hao H; Lv C; Li C; Du Z; Du H; Jin M Environ Toxicol; 2022 Aug; 37(8):1891-1901. PubMed ID: 35396826 [TBL] [Abstract][Full Text] [Related]
20. Polyadenosine diphosphate-ribose polymerase inhibitors: advances, implications, and challenges in tumor radiotherapy sensitization. Zhang Y; Liang L; Li Z; Huang Y; Jiang M; Zou B; Xu Y Front Oncol; 2023; 13():1295579. PubMed ID: 38111536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]