These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 3735165)

  • 1. Three descending interneurons reporting deviation from course in the locust. II. Physiology.
    Rowell CH; Reichert H
    J Comp Physiol A; 1986 Jun; 158(6):775-94. PubMed ID: 3735165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three descending interneurons reporting deviation from course in the locust. I. Anatomy.
    Griss C; Rowell CH
    J Comp Physiol A; 1986 Jun; 158(6):765-74. PubMed ID: 3735164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of nonphaselocked exteroceptive information in the control of rhythmic flight in the locust.
    Reichert H; Rowell CH
    J Neurophysiol; 1985 May; 53(5):1201-18. PubMed ID: 2987432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The organization of exteroceptive sensory inputs to interneurons of the flight neuropil in locusts.
    Rowell CH
    Tissue Cell; 1991; 23(2):271-6. PubMed ID: 18621162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons.
    Burrows M; Newland PL
    J Comp Neurol; 1993 Mar; 329(3):412-26. PubMed ID: 8459052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular organization of an antennal mechanosensory pathway in the cockroach, Periplaneta americana.
    Burdohan JA; Comer CM
    J Neurosci; 1996 Sep; 16(18):5830-43. PubMed ID: 8795635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interneurons in the tritocerebrum of the crayfish.
    Tautz J
    Brain Res; 1987 Mar; 407(2):230-9. PubMed ID: 3567643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity of synaptic connections in sensory-motor pathways of the adult locust flight system.
    Wolf H; Büschges A
    J Neurophysiol; 1997 Sep; 78(3):1276-84. PubMed ID: 9310419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spiking local interneurons as primary integrators of mechanosensory information in the locust.
    Siegler MV; Burrows M
    J Neurophysiol; 1983 Dec; 50(6):1281-95. PubMed ID: 6663326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The processing of mechanosensory information by spiking local interneurons in the locust.
    Burrows M
    J Neurophysiol; 1985 Sep; 54(3):463-78. PubMed ID: 4045534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of hindlimb posture by wind-sensitive hairs and antennae during locust flight.
    Arbas EA
    J Comp Physiol A; 1986 Dec; 159(6):849-57. PubMed ID: 3806441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triggering of locust jump by multimodal inhibitory interneurons.
    Pearson KG; Heitler WJ; Steeves JD
    J Neurophysiol; 1980 Feb; 43(2):257-78. PubMed ID: 6247459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhythmic modulation of the responsiveness of locust sensory local interneurons by walking pattern generating networks.
    Wolf H; Laurent G
    J Neurophysiol; 1994 Jan; 71(1):110-8. PubMed ID: 8158223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and physiology of abdominal projection interneurones in the locust with mechanosensory inputs from ovipositor hair receptors.
    Kalogianni E
    J Comp Neurol; 1996 Mar; 366(4):656-73. PubMed ID: 8833115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular recordings from interneurons and motoneurons in intact flying locusts.
    Wolf H; Pearson KG
    J Neurosci Methods; 1987 Oct; 21(2-4):345-54. PubMed ID: 3682883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of spiking local interneurones in the locust to proprioceptive signals from the femoral chordotonal organ.
    Burrows M
    J Comp Physiol A; 1988 Dec; 164(2):207-17. PubMed ID: 3244128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlates to flight-related density-dependent phase characteristics in locusts.
    Fuchs E; Kutsch W; Ayali A
    J Neurobiol; 2003 Nov; 57(2):152-62. PubMed ID: 14556281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of leg movements on the synaptic activity of descending statocyst interneurons in crayfish, Procambarus clarkii.
    Hama N; Takahata M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Dec; 189(12):877-88. PubMed ID: 14593487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase-dependent influences of wing stretch receptors on flight rhythm in the locust.
    Pearson KG; Reye DN; Robertson RM
    J Neurophysiol; 1983 May; 49(5):1168-81. PubMed ID: 6864244
    [No Abstract]   [Full Text] [Related]  

  • 20. Crayfish antennal neuropil. II. Periodic bursting elicited by sensory stimulation and extrinsic current in interneurons.
    Glantz RM
    J Neurophysiol; 1978 Sep; 41(5):1314-27. PubMed ID: 702195
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.