These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 3735166)
1. Modulation of auditory responsiveness in the locust. Boyan GS J Comp Physiol A; 1986 Jun; 158(6):813-25. PubMed ID: 3735166 [TBL] [Abstract][Full Text] [Related]
2. Octopaminergic modulation of interneurons in the flight system of the locust. Ramirez JM; Pearson KG J Neurophysiol; 1991 Nov; 66(5):1522-37. PubMed ID: 1765792 [TBL] [Abstract][Full Text] [Related]
3. Analysis of frequency-modulated and complex sounds by single auditory neurones of bats. Suga N J Physiol; 1968 Sep; 198(1):51-80. PubMed ID: 5677032 [TBL] [Abstract][Full Text] [Related]
4. Phonotaxis in flying crickets. II. Physiological mechanisms of two-tone suppression of the high frequency avoidance steering behavior by the calling song. Nolen TG; Hoy RR J Comp Physiol A; 1986 Oct; 159(4):441-56. PubMed ID: 3783497 [TBL] [Abstract][Full Text] [Related]
5. Output connections of a wind sensitive interneurone with motor neurones innervating flight steering muscles in the locust. Burrows M; Pflüger HJ J Comp Physiol A; 1992 Nov; 171(4):437-46. PubMed ID: 1469664 [TBL] [Abstract][Full Text] [Related]
6. Some acoustic properties of neurones in the ferret inferior colliculus. Moore DR; Semple MN; Addison PD Brain Res; 1983 Jun; 269(1):69-82. PubMed ID: 6871703 [TBL] [Abstract][Full Text] [Related]
7. The immediate effects of acoustic trauma on excitation and inhibition in the inferior colliculus: A Wiener-kernel analysis. Heeringa AN; van Dijk P Hear Res; 2016 Jan; 331():47-56. PubMed ID: 26523371 [TBL] [Abstract][Full Text] [Related]
8. Correlation between auditory sensitivity and vocalization in anabantoid fishes. Ladich F; Yan HY J Comp Physiol A; 1998 Jun; 182(6):737-46. PubMed ID: 9631554 [TBL] [Abstract][Full Text] [Related]
9. Neural correlates to flight-related density-dependent phase characteristics in locusts. Fuchs E; Kutsch W; Ayali A J Neurobiol; 2003 Nov; 57(2):152-62. PubMed ID: 14556281 [TBL] [Abstract][Full Text] [Related]
10. Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds. Bieser A; Müller-Preuss P Exp Brain Res; 1996 Mar; 108(2):273-84. PubMed ID: 8815035 [TBL] [Abstract][Full Text] [Related]
11. Interneurons in the flight system of the locust: distribution, connections, and resetting properties. Robertson RM; Pearson KG J Comp Neurol; 1983 Mar; 215(1):33-50. PubMed ID: 6853764 [TBL] [Abstract][Full Text] [Related]
12. Neuroethology of the katydid T-cell. I. Tuning and responses to pure tones. Faure PA; Hoy RR J Exp Biol; 2000 Nov; 203(Pt 21):3225-42. PubMed ID: 11023843 [TBL] [Abstract][Full Text] [Related]
13. Ontogenetic change in the analysis of sound frequency in the infant rat. Hyson RL; Rudy JW Dev Psychobiol; 1987 Mar; 20(2):189-207. PubMed ID: 3582780 [TBL] [Abstract][Full Text] [Related]
14. Noise-induced hearing loss induces loudness intolerance in a rat Active Sound Avoidance Paradigm (ASAP). Manohar S; Spoth J; Radziwon K; Auerbach BD; Salvi R Hear Res; 2017 Sep; 353():197-203. PubMed ID: 28705607 [TBL] [Abstract][Full Text] [Related]
15. High-frequency neurons in the inferior colliculus that are sensitive to interaural delays of amplitude-modulated tones: evidence for dual binaural influences. Batra R; Kuwada S; Stanford TR J Neurophysiol; 1993 Jul; 70(1):64-80. PubMed ID: 8395589 [TBL] [Abstract][Full Text] [Related]
16. Stopping a walking locust with sound: an analysis of variation in behavioural threshold. Moorhouse JE; Fosbrooke IH; Ludlow AR Exp Biol; 1987; 46(4):193-201. PubMed ID: 3582590 [TBL] [Abstract][Full Text] [Related]
17. Neural circuits in the flight system of the locust. Robertson RM; Pearson KG J Neurophysiol; 1985 Jan; 53(1):110-28. PubMed ID: 2983035 [TBL] [Abstract][Full Text] [Related]
18. Frequency sensitivity and directional hearing in the gleaning bat, Plecotus auritus (Linnaeus 1758). Coles RB; Guppy A; Anderson ME; Schlegel P J Comp Physiol A; 1989; 165(2):269-80. PubMed ID: 2746553 [TBL] [Abstract][Full Text] [Related]
19. Properties of spatial receptive fields in the central nucleus of the cat inferior colliculus. I. Responses to tones of low intensity. Moore DR; Semple MN; Addison PD; Aitkin LM Hear Res; 1984 Feb; 13(2):159-74. PubMed ID: 6715263 [TBL] [Abstract][Full Text] [Related]
20. Physiology and tonotopic organization of auditory receptors in the cricket Gryllus bimaculatus DeGeer. Oldfield BP; Kleindienst HU; Huber F J Comp Physiol A; 1986 Oct; 159(4):457-64. PubMed ID: 3783498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]