BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37351756)

  • 1. Model-Guided Design and Optimization of CPA Perfusion Protocols for Whole Organ Cryopreservation.
    Han Z; Rao JS; Ramesh S; Hergesell J; Namsrai BE; Etheridge ML; Finger EB; Bischof JC
    Ann Biomed Eng; 2023 Oct; 51(10):2216-2228. PubMed ID: 37351756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of three multi-cryoprotectant loading protocols for vitrification of porcine articular cartilage.
    Wu K; Shardt N; Laouar L; Chen Z; Prasad V; Elliott JAW; Jomha NM
    Cryobiology; 2020 Feb; 92():151-160. PubMed ID: 31917159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal vitrification protocol for mouse ovarian tissue cryopreservation: effect of cryoprotective agents and in vitro culture on vitrified-warmed ovarian tissue survival.
    Youm HW; Lee JR; Lee J; Jee BC; Suh CS; Kim SH
    Hum Reprod; 2014 Apr; 29(4):720-30. PubMed ID: 24365801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osmotic response during kidney perfusion with cryoprotectant in isotonic or hypotonic vehicle solution.
    Warner RM; Yang J; Drake A; Lee Y; Nemanic S; Scott D; Higgins AZ
    PeerJ; 2023; 11():e16323. PubMed ID: 38025736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CPA toxicity screening of cryoprotective solutions in rat hearts.
    Kraft CJ; Namsrai BE; Tobolt D; Etheridge ML; Finger EB; Bischof JC
    Cryobiology; 2024 Mar; 114():104842. PubMed ID: 38158172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cryoprotectant addition and washout methods on the viability of precision-cut liver slices.
    Guan N; Blomsma SA; van Midwoud PM; Fahy GM; Groothuis GM; de Graaf IA
    Cryobiology; 2012 Dec; 65(3):179-87. PubMed ID: 22722061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryopreservation of organs by vitrification: perspectives and recent advances.
    Fahy GM; Wowk B; Wu J; Phan J; Rasch C; Chang A; Zendejas E
    Cryobiology; 2004 Apr; 48(2):157-78. PubMed ID: 15094092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple cryoprotectant toxicity model for vitrification solution optimization.
    Warner RM; Brown KS; Benson JD; Eroglu A; Higgins AZ
    Cryobiology; 2022 Oct; 108():1-9. PubMed ID: 36113568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards a vitrification-based cryopreservation protocol for the coral Pocillopora damicornis L.: Tolerance of tissue balls to 4.5 M cryoprotectant solutions.
    Feuillassier L; Masanet P; Romans P; Barthélémy D; Engelmann F
    Cryobiology; 2015 Oct; 71(2):224-35. PubMed ID: 26188079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures.
    Elliott GD; Wang S; Fuller BJ
    Cryobiology; 2017 Jun; 76():74-91. PubMed ID: 28428046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematically optimized cryoprotectant equilibration procedures for cryopreservation of human oocytes.
    Davidson AF; Benson JD; Higgins AZ
    Theor Biol Med Model; 2014 Mar; 11():13. PubMed ID: 24649826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viability and function of the cryopreserved whole rat ovary: comparison between slow-freezing and vitrification.
    Milenkovic M; Diaz-Garcia C; Wallin A; Brännström M
    Fertil Steril; 2012 May; 97(5):1176-82. PubMed ID: 22341373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Cryoprotectant Loading Method for Cell Droplet Vitrification with Continuous Evaporation.
    Cui M; Liu L; Chen L; Han H; Zhan T; Dang H; Yang G; Xu Y
    Langmuir; 2022 Nov; 38(46):14129-14139. PubMed ID: 36351304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved low-CPA vitrification of mouse oocytes using quartz microcapillary.
    Choi JK; Huang H; He X
    Cryobiology; 2015 Jun; 70(3):269-72. PubMed ID: 25869750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of five additives to mitigate toxicity of cryoprotective agents on porcine chondrocytes.
    Wu K; Laouar L; Dong R; Elliott JAW; Jomha NM
    Cryobiology; 2019 Jun; 88():98-105. PubMed ID: 30826335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of Thermal Conductivities of Two Cryoprotective Agent Solutions for Vitreous Cryopreservation of Organs at the Temperature Range of 77 K-300 K Using a Thermal Sensor Made of Microscale Enamel Copper Wire.
    Li Y; Zhao G; Hossain SMC; Panhwar F; Sun W; Kong F; Zang C; Jiang Z
    Biopreserv Biobank; 2017 Jun; 15(3):228-233. PubMed ID: 28051325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid quantification of multi-cryoprotectant toxicity using an automated liquid handling method.
    Warner RM; Ampo E; Nelson D; Benson JD; Eroglu A; Higgins AZ
    Cryobiology; 2021 Feb; 98():219-232. PubMed ID: 33157080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isochoric vitrification: An experimental study to establish proof of concept.
    Zhang Y; Ukpai G; Grigoropoulos A; Powell-Palm MJ; Weegman BP; Taylor MJ; Rubinsky B
    Cryobiology; 2018 Aug; 83():48-55. PubMed ID: 29908947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethylene glycol and glycerol loading and unloading in porcine meniscal tissue.
    Takroni TA; Yu H; Laouar L; Adesida AB; Elliott JAW; Jomha NM
    Cryobiology; 2017 Feb; 74():50-60. PubMed ID: 27956221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parasite cryopreservation by vitrification.
    James ER
    Cryobiology; 2004 Dec; 49(3):201-10. PubMed ID: 15615606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.