BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37352105)

  • 1. Protocol to generate large human intestinal organoids using a rotating bioreactor.
    Takahashi J; Sugihara HY; Kato S; Nagata S; Okamoto R; Mizutani T
    STAR Protoc; 2023 Sep; 4(3):102374. PubMed ID: 37352105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suspension culture in a rotating bioreactor for efficient generation of human intestinal organoids.
    Takahashi J; Mizutani T; Sugihara HY; Nagata S; Kato S; Hiraguri Y; Takeoka S; Tsuchiya M; Kuno R; Kakinuma S; Watanabe M; Okamoto R
    Cell Rep Methods; 2022 Nov; 2(11):100337. PubMed ID: 36452871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of Gastrointestinal Organoids from Human Pluripotent Stem Cells.
    Múnera JO; Wells JM
    Methods Mol Biol; 2017; 1597():167-177. PubMed ID: 28361317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable generation of 3D pancreatic islet organoids from human pluripotent stem cells in suspension bioreactors.
    Pollock SD; Galicia-Silva IM; Liu M; Gruskin ZL; Alvarez-Dominguez JR
    STAR Protoc; 2023 Dec; 4(4):102580. PubMed ID: 37738117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of small intestinal organoids for experimental intestinal physiology.
    Capeling M; Huang S; Mulero-Russe A; Cieza R; Tsai YH; Garcia A; Hill DR
    Methods Cell Biol; 2020; 159():143-174. PubMed ID: 32586441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protocol for differentiation of functional macrophages from human induced pluripotent stem cells.
    Jeong S; Chang H; Hong SH
    STAR Protoc; 2024 Mar; 5(1):102925. PubMed ID: 38421862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor.
    Qian X; Jacob F; Song MM; Nguyen HN; Song H; Ming GL
    Nat Protoc; 2018 Mar; 13(3):565-580. PubMed ID: 29470464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation of cryopreserved mid-hindgut endoderm for more reliable and reproducible hPSC-derived small intestinal organoid generation.
    Pitstick AL; Poling HM; Sundaram N; Lewis PL; Kechele DO; Sanchez JG; Scott MA; Broda TR; Helmrath MA; Wells JM; Mayhew CN
    Stem Cell Reports; 2022 Aug; 17(8):1889-1902. PubMed ID: 35905739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying differentiation of progenitor populations using cerebral organoid models for neurodevelopmental disorders.
    Schroder AL; Fairbanks-Santana M; Rakotomamonjy J; Guemez-Gamboa A
    STAR Protoc; 2024 Mar; 5(1):102904. PubMed ID: 38427568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol for SARS-CoV-2 infection of kidney organoids derived from human pluripotent stem cells.
    Garreta E; Moya-Rull D; Stanifer ML; Monteil V; Prado P; Marco A; Tarantino C; Gallo M; Jonsson G; Hagelkruys A; Mirazimi A; Boulant S; Penninger JM; Montserrat N
    STAR Protoc; 2022 Dec; 3(4):101872. PubMed ID: 36595951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized protocol for analysis of neural stem proliferation in human-pluripotent-stem-cell-derived cerebral organoids.
    Tang XY; Wang D; Zhang XY; Xu M; Liu Y
    STAR Protoc; 2023 Mar; 4(2):102169. PubMed ID: 36924505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation, Maintenance, and Characterization of Human Pluripotent Stem Cell-derived Intestinal and Colonic Organoids.
    Qu N; Daoud A; Jeffcoat B; Múnera JO
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34309606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation and single-cell RNA-seq analyses of human pluripotent-stem-cell-derived renal organoids.
    Lian E; Pietrobon A; Stanford WL
    STAR Protoc; 2023 May; 4(2):102314. PubMed ID: 37220001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinoic Acid Promotes the In Vitro Growth, Patterning and Improves the Cellular Composition of Human Pluripotent Stem-Cell-Derived Intestinal Organoids.
    Qu N; Jeffcoat B; Maity P; Christensen RK; Múnera JO
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocol to develop force-generating human skeletal muscle organoids.
    Shahriyari M; Rinn M; Hofemeier AD; Babych A; Zimmermann WH; Tiburcy M
    STAR Protoc; 2024 Mar; 5(1):102794. PubMed ID: 38133957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiation of beta-like cells from human induced pluripotent stem cell-derived pancreatic progenitor organoids.
    Pedraza-Arevalo S; Cujba AM; Alvarez-Fallas ME; Sancho R
    STAR Protoc; 2022 Sep; 3(3):101656. PubMed ID: 36092820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation, culture, and stimulation of small intestinal murine organoids in parasitology research.
    Campillo Poveda M; Drurey C; Maizels RM
    STAR Protoc; 2023 Dec; 4(4):102608. PubMed ID: 37751353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of human induced pluripotent stem cell-derived intestinal organoids on colitis-model mice.
    Nakanishi A; Toyama S; Onozato D; Watanabe C; Hashita T; Iwao T; Matsunaga T
    Regen Ther; 2022 Dec; 21():351-361. PubMed ID: 36161099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocol for live imaging of bacteria-cell interactions in genetically modified mouse small intestinal organoids.
    Kim M; Fèvre C; Lavina M; Disson O; Lecuit M
    STAR Protoc; 2024 Mar; 5(1):102773. PubMed ID: 38103194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocol for a placenta-on-a-chip model using trophoblasts differentiated from human induced pluripotent stem cells.
    Lermant A; Rabussier G; Davidson L; Lanz HL; Murdoch CE
    STAR Protoc; 2024 Mar; 5(1):102879. PubMed ID: 38358879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.