These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37352469)

  • 21. Direct observation of drops on slippery lubricant-infused surfaces.
    Schellenberger F; Xie J; Encinas N; Hardy A; Klapper M; Papadopoulos P; Butt HJ; Vollmer D
    Soft Matter; 2015 Oct; 11(38):7617-26. PubMed ID: 26291621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Friction Coefficients for Droplets on Solids: The Liquid-Solid Amontons' Laws.
    McHale G; Gao N; Wells GG; Barrio-Zhang H; Ledesma-Aguilar R
    Langmuir; 2022 Apr; 38(14):4425-4433. PubMed ID: 35353534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Water organization between oppositely charged surfaces: implications for protein sliding along DNA.
    Marcovitz A; Naftaly A; Levy Y
    J Chem Phys; 2015 Feb; 142(8):085102. PubMed ID: 25725757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Charging of drops impacting onto superhydrophobic surfaces.
    Díaz D; Garcia-Gonzalez D; Bista P; Weber SAL; Butt HJ; Stetten A; Kappl M
    Soft Matter; 2022 Feb; 18(8):1628-1635. PubMed ID: 35113106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solid-to-Liquid Charge Transfer for Generating Droplets with Tunable Charge.
    Sun Y; Huang X; Soh S
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9956-60. PubMed ID: 27417888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contact line relaxation of sessile drops on PDMS surfaces: A methodological perspective.
    Ibáñez-Ibáñez PF; Montes Ruiz-Cabello FJ; Cabrerizo-Vílchez MA; Rodríguez-Valverde MA
    J Colloid Interface Sci; 2021 May; 589():166-172. PubMed ID: 33460848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonlinear shear wave interaction at a frictional interface: energy dissipation and generation of harmonics.
    Meziane A; Norris AN; Shuvalov AL
    J Acoust Soc Am; 2011 Oct; 130(4):1820-8. PubMed ID: 21973335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations.
    Ravipati S; Aymard B; Kalliadasis S; Galindo A
    J Chem Phys; 2018 Apr; 148(16):164704. PubMed ID: 29716213
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contact electrification through interfacial charge transfer: a mechanistic viewpoint on solid-liquid interfaces.
    Panda PK; Singh D; Köhler MH; de Vargas DD; Wang ZL; Ahuja R
    Nanoscale Adv; 2022 Feb; 4(3):884-893. PubMed ID: 36131814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interfacial Charge Density and Its Connection to Adhesion and Frictional Forces.
    Wolloch M; Levita G; Restuccia P; Righi MC
    Phys Rev Lett; 2018 Jul; 121(2):026804. PubMed ID: 30085711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. General theory of frictional heating with application to rubber friction.
    Fortunato G; Ciaravola V; Furno A; Lorenz B; Persson BN
    J Phys Condens Matter; 2015 May; 27(17):175008. PubMed ID: 25873527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the mechanism of floating and sliding of liquid marbles.
    Bormashenko E; Bormashenko Y; Musin A; Barkay Z
    Chemphyschem; 2009 Mar; 10(4):654-6. PubMed ID: 19177484
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Velocity-strengthening friction significantly affects interfacial dynamics, strength and dissipation.
    Bar-Sinai Y; Spatschek R; Brener EA; Bouchbinder E
    Sci Rep; 2015 Jan; 5():7841. PubMed ID: 25598161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation of Motion of Drops with Interfacial Contact.
    Chaudhury MK; Chakrabarti A; Daniel S
    Langmuir; 2015 Sep; 31(34):9266-81. PubMed ID: 25683896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new methodology for measuring solid/liquid interfacial energy.
    Sarkar S; Jafari Gukeh M; Roy T; Gaikwad H; Bellussi FM; Moitra S; Megaridis CM
    J Colloid Interface Sci; 2023 Mar; 633():800-807. PubMed ID: 36493744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ observation of a hydrogel-glass interface during sliding friction.
    Yamamoto T; Kurokawa T; Ahmed J; Kamita G; Yashima S; Furukawa Y; Ota Y; Furukawa H; Gong JP
    Soft Matter; 2014 Aug; 10(30):5589-96. PubMed ID: 24962139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decoding the phonon transport of structural lubrication at silicon/silicon interface.
    Dong Y; Ding Y; Rui Z; Lian F; Tao Y; Hui W; Fu R
    Nanotechnology; 2023 Mar; 34(21):. PubMed ID: 36821852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sliding friction and contact angle hysteresis of droplets on microhole-structured surfaces.
    Qiao S; Li Q; Feng XQ
    Eur Phys J E Soft Matter; 2018 Feb; 41(2):25. PubMed ID: 29464416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Liquid-polymer triboelectricity: chemical mechanisms in the contact electrification process.
    Sosa MD; Martínez Ricci ML; Missoni LL; Murgida DH; Cánneva A; D'Accorso NB; Negri RM
    Soft Matter; 2020 Aug; 16(30):7040-7051. PubMed ID: 32667028
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stick-slip sliding of water drops on chemically heterogeneous surfaces.
    Varagnolo S; Ferraro D; Fantinel P; Pierno M; Mistura G; Amati G; Biferale L; Sbragaglia M
    Phys Rev Lett; 2013 Aug; 111(6):066101. PubMed ID: 23971591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.