These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 37353489)
21. Surface Design Strategy of Catalysts for Water Electrolysis. Zhou B; Gao R; Zou JJ; Yang H Small; 2022 Jul; 18(27):e2202336. PubMed ID: 35665595 [TBL] [Abstract][Full Text] [Related]
22. Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell. Heidrich ES; Dolfing J; Scott K; Edwards SR; Jones C; Curtis TP Appl Microbiol Biotechnol; 2013 Aug; 97(15):6979-89. PubMed ID: 23053105 [TBL] [Abstract][Full Text] [Related]
23. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. Zhang Y; Angelidaki I Water Res; 2014 Jun; 56():11-25. PubMed ID: 24631941 [TBL] [Abstract][Full Text] [Related]
24. Highly cost-effective platinum-free anion exchange membrane electrolysis for large scale energy storage and hydrogen production. Vincent I; Lee EC; Kim HM RSC Adv; 2020 Oct; 10(61):37429-37438. PubMed ID: 35521279 [TBL] [Abstract][Full Text] [Related]
25. Potential of Progressive and Disruptive Innovation-Driven Cost Reductions of Green Hydrogen Production. Daniel T; Xing L; Cai Q; Liu L; Xuan J Energy Fuels; 2024 Jun; 38(11):10370-10380. PubMed ID: 38863683 [TBL] [Abstract][Full Text] [Related]
26. The hydrogen issue. Armaroli N; Balzani V ChemSusChem; 2011 Jan; 4(1):21-36. PubMed ID: 21226208 [TBL] [Abstract][Full Text] [Related]
27. GeoH2 model: Geospatial cost optimization of green hydrogen production including storage and transportation. Halloran C; Leonard A; Salmon N; Müller L; Hirmer S MethodsX; 2024 Jun; 12():102660. PubMed ID: 38524305 [TBL] [Abstract][Full Text] [Related]
28. A non-autonomous optimal control model of renewable energy production under the aspect of fluctuating supply and learning by doing. Moser E; Grass D; Tragler G OR Spectr; 2016; 38():545-575. PubMed ID: 27512344 [TBL] [Abstract][Full Text] [Related]
29. A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies. Yang E; Omar Mohamed H; Park SG; Obaid M; Al-Qaradawi SY; Castaño P; Chon K; Chae KJ Bioresour Technol; 2021 Jan; 320(Pt B):124363. PubMed ID: 33186801 [TBL] [Abstract][Full Text] [Related]
30. Simultaneous Sulfite Electrolysis and Hydrogen Production Using Ni Foam-Based Three-Dimensional Electrodes. Márquez-Montes RA; Kawashima K; Vo KM; Chávez-Flores D; Collins-Martínez VH; Mullins CB; Ramos-Sánchez VH Environ Sci Technol; 2020 Oct; 54(19):12511-12520. PubMed ID: 32902265 [TBL] [Abstract][Full Text] [Related]
31. Membrane-Based Electrolysis for Hydrogen Production: A Review. Ahmad Kamaroddin MF; Sabli N; Tuan Abdullah TA; Siajam SI; Abdullah LC; Abdul Jalil A; Ahmad A Membranes (Basel); 2021 Oct; 11(11):. PubMed ID: 34832039 [TBL] [Abstract][Full Text] [Related]
32. Improved hydrogen gas production in microbial electrolysis cells using inexpensive recycled carbon fibre fabrics. Carlotta-Jones DI; Purdy K; Kirwan K; Stratford J; Coles SR Bioresour Technol; 2020 May; 304():122983. PubMed ID: 32086038 [TBL] [Abstract][Full Text] [Related]
33. Effective modelling of hydrogen and energy recovery in microbial electrolysis cell by artificial neural network and adaptive network-based fuzzy inference system. Hosseinzadeh A; Zhou JL; Altaee A; Baziar M; Li D Bioresour Technol; 2020 Nov; 316():123967. PubMed ID: 32777721 [TBL] [Abstract][Full Text] [Related]
34. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Chen L; Dong X; Wang Y; Xia Y Nat Commun; 2016 May; 7():11741. PubMed ID: 27199009 [TBL] [Abstract][Full Text] [Related]
35. Towards renewable hydrogen-based electrolysis: Alkaline vs Proton Exchange Membrane. van Haersma Buma BND; Peretto M; Matar ZM; van de Kaa G Heliyon; 2023 Jul; 9(7):e17999. PubMed ID: 37539202 [TBL] [Abstract][Full Text] [Related]
36. Hydrogen production from switchgrass via an integrated pyrolysis-microbial electrolysis process. Lewis AJ; Ren S; Ye X; Kim P; Labbe N; Borole AP Bioresour Technol; 2015 Nov; 195():231-41. PubMed ID: 26210530 [TBL] [Abstract][Full Text] [Related]
37. The polyoxometalates mediated preparation of phosphate-modified NiMoO Qiu Y; Dai X; Wang Y; Ji X; Ma Z; Liu S J Colloid Interface Sci; 2023 Jan; 629(Pt A):297-309. PubMed ID: 36081209 [TBL] [Abstract][Full Text] [Related]
38. Green H Esposito E; Minotti A; Fontananova E; Longo M; Jansen JC; Figoli A Membranes (Basel); 2021 Dec; 12(1):. PubMed ID: 35054542 [TBL] [Abstract][Full Text] [Related]
39. Photocatalytic solar hydrogen production from water on a 100-m Nishiyama H; Yamada T; Nakabayashi M; Maehara Y; Yamaguchi M; Kuromiya Y; Nagatsuma Y; Tokudome H; Akiyama S; Watanabe T; Narushima R; Okunaka S; Shibata N; Takata T; Hisatomi T; Domen K Nature; 2021 Oct; 598(7880):304-307. PubMed ID: 34433207 [TBL] [Abstract][Full Text] [Related]
40. Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater. Xiao X; Yang L; Sun W; Chen Y; Yu H; Li K; Jia B; Zhang L; Ma T Small; 2022 Mar; 18(11):e2105830. PubMed ID: 34878210 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]