BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37353554)

  • 1. An end-to-end deep learning framework for translating mass spectra to de-novo molecules.
    Litsa EE; Chenthamarakshan V; Das P; Kavraki LE
    Commun Chem; 2023 Jun; 6(1):132. PubMed ID: 37353554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MassGenie: A Transformer-Based Deep Learning Method for Identifying Small Molecules from Their Mass Spectra.
    Shrivastava AD; Swainston N; Samanta S; Roberts I; Wright Muelas M; Kell DB
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Chemical Autoencoder Latent Space and Molecular
    Bjerrum EJ; Sattarov B
    Biomolecules; 2018 Oct; 8(4):. PubMed ID: 30380783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MS2DeepScore: a novel deep learning similarity measure to compare tandem mass spectra.
    Huber F; van der Burg S; van der Hooft JJJ; Ridder L
    J Cheminform; 2021 Oct; 13(1):84. PubMed ID: 34715914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of chemical structure recognition by encoder-decoder models in learning progress.
    Nemoto S; Mizuno T; Kusuhara H
    J Cheminform; 2023 Apr; 15(1):45. PubMed ID: 37046349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MSNovelist: de novo structure generation from mass spectra.
    Stravs MA; Dührkop K; Böcker S; Zamboni N
    Nat Methods; 2022 Jul; 19(7):865-870. PubMed ID: 35637304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De Novo Molecule Design by Translating from Reduced Graphs to SMILES.
    Pogány P; Arad N; Genway S; Pickett SD
    J Chem Inf Model; 2019 Mar; 59(3):1136-1146. PubMed ID: 30525594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SMILES-based deep generative scaffold decorator for de-novo drug design.
    Arús-Pous J; Patronov A; Bjerrum EJ; Tyrchan C; Reymond JL; Chen H; Engkvist O
    J Cheminform; 2020 May; 12(1):38. PubMed ID: 33431013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
    Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H
    J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning with sentence embeddings pre-trained on biomedical corpora improves the performance of finding similar sentences in electronic medical records.
    Chen Q; Du J; Kim S; Wilbur WJ; Lu Z
    BMC Med Inform Decis Mak; 2020 Apr; 20(Suppl 1):73. PubMed ID: 32349758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De Novo Drug Design Using Transformer-Based Machine Translation and Reinforcement Learning of an Adaptive Monte Carlo Tree Search.
    Ang D; Rakovski C; Atamian HS
    Pharmaceuticals (Basel); 2024 Jan; 17(2):. PubMed ID: 38399376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CONSMI: Contrastive Learning in the Simplified Molecular Input Line Entry System Helps Generate Better Molecules.
    Qian Y; Shi M; Zhang Q
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38276573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current and future deep learning algorithms for tandem mass spectrometry (MS/MS)-based small molecule structure elucidation.
    Liu Y; De Vijlder T; Bittremieux W; Laukens K; Heyndrickx W
    Rapid Commun Mass Spectrom; 2021 May; ():e9120. PubMed ID: 33955607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning embedder method and tool for mass spectra similarity search.
    Qin C; Luo X; Deng C; Shu K; Zhu W; Griss J; Hermjakob H; Bai M; Perez-Riverol Y
    J Proteomics; 2021 Feb; 232():104070. PubMed ID: 33307250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Status and Prospects of Research on Deep Learning-based De Novo Generation of Drug Molecules.
    Shi H; Wang Z; Zhou L; Xu Z; Xie L; Kong R; Chang S
    Curr Comput Aided Drug Des; 2024 Feb; ():. PubMed ID: 38321907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers.
    Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP
    Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Decoder-Free Variational Deep Embedding for Unsupervised Clustering.
    Ji Q; Sun Y; Gao J; Hu Y; Yin B
    IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5681-5693. PubMed ID: 33882000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MICER: a pre-trained encoder-decoder architecture for molecular image captioning.
    Yi J; Wu C; Zhang X; Xiao X; Qiu Y; Zhao W; Hou T; Cao D
    Bioinformatics; 2022 Sep; 38(19):4562-4572. PubMed ID: 35929794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GC-EI-MS datasets of trimethylsilyl (TMS) and
    Ljoncheva M; Stevanoska S; Kosjek T; Džeroski S
    Data Brief; 2023 Jun; 48():109138. PubMed ID: 37128582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generative Pre-trained Transformer (GPT) based model with relative attention for de novo drug design.
    Haroon S; C A H; A S J
    Comput Biol Chem; 2023 Oct; 106():107911. PubMed ID: 37450999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.