These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 37353755)
1. Lipid metabolism and antioxidant system contribute to salinity tolerance in halophytic grass seashore paspalum in a tissue-specific manner. Pan L; Hu X; Liao L; Xu T; Sun Q; Tang M; Chen Z; Wang Z BMC Plant Biol; 2023 Jun; 23(1):337. PubMed ID: 37353755 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptome profiling provides insights into plant salt tolerance in seashore paspalum (Paspalum vaginatum). Wu P; Cogill S; Qiu Y; Li Z; Zhou M; Hu Q; Chang Z; Noorai RE; Xia X; Saski C; Raymer P; Luo H BMC Genomics; 2020 Feb; 21(1):131. PubMed ID: 32033524 [TBL] [Abstract][Full Text] [Related]
3. The Halophyte Seashore Paspalum Uses Adaxial Leaf Papillae for Sodium Sequestration. Spiekerman JJ; Devos KM Plant Physiol; 2020 Dec; 184(4):2107-2119. PubMed ID: 33082268 [TBL] [Abstract][Full Text] [Related]
4. Up-regulation of lipid metabolism and glycine betaine synthesis are associated with choline-induced salt tolerance in halophytic seashore paspalum. Gao Y; Li M; Zhang X; Yang Q; Huang B Plant Cell Environ; 2020 Jan; 43(1):159-173. PubMed ID: 31600831 [TBL] [Abstract][Full Text] [Related]
5. Intraspecific variation in elemental accumulation and its association with salt tolerance in Paspalum vaginatum. Goad DM; Kellogg EA; Baxter I; Olsen KM G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34568927 [TBL] [Abstract][Full Text] [Related]
6. Overexpression of PvWAK3 from seashore paspalum increases salt tolerance in transgenic Arabidopsis via maintenance of ion and ROS homeostasis. Li Y; Yang Q; Huang H; Guo Y; Sun Q; Guo Z; Shi H Plant Physiol Biochem; 2024 Feb; 207():108337. PubMed ID: 38199027 [TBL] [Abstract][Full Text] [Related]
7. Hybridization, polyploidy and clonality influence geographic patterns of diversity and salt tolerance in the model halophyte seashore paspalum (Paspalum vaginatum). Goad DM; Baxter I; Kellogg EA; Olsen KM Mol Ecol; 2021 Jan; 30(1):148-161. PubMed ID: 33128807 [TBL] [Abstract][Full Text] [Related]
8. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance. Chen Y; Chen C; Tan Z; Liu J; Zhuang L; Yang Z; Huang B Front Plant Sci; 2016; 7():102. PubMed ID: 26904068 [TBL] [Abstract][Full Text] [Related]
9. Identification of differentially expressed salt-responsive proteins in roots of two perennial grass species contrasting in salinity tolerance. Liu Y; Du H; He X; Huang B; Wang Z J Plant Physiol; 2012 Jan; 169(2):117-26. PubMed ID: 22070977 [TBL] [Abstract][Full Text] [Related]
10. Chloroplast-localized PvBASS2 regulates salt tolerance in the C4 plant seashore paspalum. Huang R; Dai M; Jiang S; Guo Z; Shi H Plant J; 2024 Sep; 119(6):2782-2796. PubMed ID: 39058753 [TBL] [Abstract][Full Text] [Related]
11. Adaptation Strategies of Halophytic Barley Isayenkov S; Hilo A; Rizzo P; Tandron Moya YA; Rolletschek H; Borisjuk L; Radchuk V Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260985 [TBL] [Abstract][Full Text] [Related]
12. Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. Cai ZQ; Gao Q BMC Plant Biol; 2020 Feb; 20(1):70. PubMed ID: 32050903 [TBL] [Abstract][Full Text] [Related]
13. A calmodulin-like protein PvCML9 negatively regulates salt tolerance. Yang M; Zhou B; Song Z; Tan Z; Liu R; Luo Y; Guo Z; Lu S Plant Physiol Biochem; 2024 May; 210():108642. PubMed ID: 38643538 [TBL] [Abstract][Full Text] [Related]
14. Physiological responses and tolerance mechanisms of seashore paspalum and centipedegrass exposed to osmotic and iso-osmotic salt stresses. Katuwal KB; Xiao B; Jespersen D J Plant Physiol; 2020 May; 248():153154. PubMed ID: 32224382 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of a NF-YC Gene Results in Enhanced Drought and Salt Tolerance in Transgenic Seashore Paspalum. Wu X; Shi H; Guo Z Front Plant Sci; 2018; 9():1355. PubMed ID: 30298080 [TBL] [Abstract][Full Text] [Related]
16. Temporal and spatial changes in ion homeostasis, antioxidant defense and accumulation of flavonoids and glycolipid in a halophyte Sesuvium portulacastrum (L.) L. Nikalje GC; Variyar PS; Joshi MV; Nikam TD; Suprasanna P PLoS One; 2018; 13(4):e0193394. PubMed ID: 29641593 [TBL] [Abstract][Full Text] [Related]
17. Salinity Tolerance of Halophytic Grass Vaziriyeganeh M; Carvajal M; Du N; Zwiazek JJ Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628537 [TBL] [Abstract][Full Text] [Related]
18. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. El-Esawi MA; Alaraidh IA; Alsahli AA; Alamri SA; Ali HM; Alayafi AA Plant Physiol Biochem; 2018 Nov; 132():375-384. PubMed ID: 30268029 [TBL] [Abstract][Full Text] [Related]
19. A stress inducible SUMO conjugating enzyme gene (SaSce9) from a grass halophyte Spartina alterniflora enhances salinity and drought stress tolerance in Arabidopsis. Karan R; Subudhi PK BMC Plant Biol; 2012 Oct; 12():187. PubMed ID: 23051937 [TBL] [Abstract][Full Text] [Related]
20. Responses of growth, antioxidants and gene expression in smooth cordgrass (Spartina alterniflora) to various levels of salinity. Courtney AJ; Xu J; Xu Y Plant Physiol Biochem; 2016 Feb; 99():162-70. PubMed ID: 26760954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]