BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 37353755)

  • 1. Lipid metabolism and antioxidant system contribute to salinity tolerance in halophytic grass seashore paspalum in a tissue-specific manner.
    Pan L; Hu X; Liao L; Xu T; Sun Q; Tang M; Chen Z; Wang Z
    BMC Plant Biol; 2023 Jun; 23(1):337. PubMed ID: 37353755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptome profiling provides insights into plant salt tolerance in seashore paspalum (Paspalum vaginatum).
    Wu P; Cogill S; Qiu Y; Li Z; Zhou M; Hu Q; Chang Z; Noorai RE; Xia X; Saski C; Raymer P; Luo H
    BMC Genomics; 2020 Feb; 21(1):131. PubMed ID: 32033524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Halophyte Seashore Paspalum Uses Adaxial Leaf Papillae for Sodium Sequestration.
    Spiekerman JJ; Devos KM
    Plant Physiol; 2020 Dec; 184(4):2107-2119. PubMed ID: 33082268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Up-regulation of lipid metabolism and glycine betaine synthesis are associated with choline-induced salt tolerance in halophytic seashore paspalum.
    Gao Y; Li M; Zhang X; Yang Q; Huang B
    Plant Cell Environ; 2020 Jan; 43(1):159-173. PubMed ID: 31600831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraspecific variation in elemental accumulation and its association with salt tolerance in Paspalum vaginatum.
    Goad DM; Kellogg EA; Baxter I; Olsen KM
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34568927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of PvWAK3 from seashore paspalum increases salt tolerance in transgenic Arabidopsis via maintenance of ion and ROS homeostasis.
    Li Y; Yang Q; Huang H; Guo Y; Sun Q; Guo Z; Shi H
    Plant Physiol Biochem; 2024 Feb; 207():108337. PubMed ID: 38199027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybridization, polyploidy and clonality influence geographic patterns of diversity and salt tolerance in the model halophyte seashore paspalum (Paspalum vaginatum).
    Goad DM; Baxter I; Kellogg EA; Olsen KM
    Mol Ecol; 2021 Jan; 30(1):148-161. PubMed ID: 33128807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance.
    Chen Y; Chen C; Tan Z; Liu J; Zhuang L; Yang Z; Huang B
    Front Plant Sci; 2016; 7():102. PubMed ID: 26904068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of differentially expressed salt-responsive proteins in roots of two perennial grass species contrasting in salinity tolerance.
    Liu Y; Du H; He X; Huang B; Wang Z
    J Plant Physiol; 2012 Jan; 169(2):117-26. PubMed ID: 22070977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation Strategies of Halophytic Barley
    Isayenkov S; Hilo A; Rizzo P; Tandron Moya YA; Rolletschek H; Borisjuk L; Radchuk V
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars.
    Cai ZQ; Gao Q
    BMC Plant Biol; 2020 Feb; 20(1):70. PubMed ID: 32050903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A calmodulin-like protein PvCML9 negatively regulates salt tolerance.
    Yang M; Zhou B; Song Z; Tan Z; Liu R; Luo Y; Guo Z; Lu S
    Plant Physiol Biochem; 2024 May; 210():108642. PubMed ID: 38643538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological responses and tolerance mechanisms of seashore paspalum and centipedegrass exposed to osmotic and iso-osmotic salt stresses.
    Katuwal KB; Xiao B; Jespersen D
    J Plant Physiol; 2020 May; 248():153154. PubMed ID: 32224382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of a NF-YC Gene Results in Enhanced Drought and Salt Tolerance in Transgenic Seashore Paspalum.
    Wu X; Shi H; Guo Z
    Front Plant Sci; 2018; 9():1355. PubMed ID: 30298080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal and spatial changes in ion homeostasis, antioxidant defense and accumulation of flavonoids and glycolipid in a halophyte Sesuvium portulacastrum (L.) L.
    Nikalje GC; Variyar PS; Joshi MV; Nikam TD; Suprasanna P
    PLoS One; 2018; 13(4):e0193394. PubMed ID: 29641593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salinity Tolerance of Halophytic Grass
    Vaziriyeganeh M; Carvajal M; Du N; Zwiazek JJ
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression.
    El-Esawi MA; Alaraidh IA; Alsahli AA; Alamri SA; Ali HM; Alayafi AA
    Plant Physiol Biochem; 2018 Nov; 132():375-384. PubMed ID: 30268029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stress inducible SUMO conjugating enzyme gene (SaSce9) from a grass halophyte Spartina alterniflora enhances salinity and drought stress tolerance in Arabidopsis.
    Karan R; Subudhi PK
    BMC Plant Biol; 2012 Oct; 12():187. PubMed ID: 23051937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of growth, antioxidants and gene expression in smooth cordgrass (Spartina alterniflora) to various levels of salinity.
    Courtney AJ; Xu J; Xu Y
    Plant Physiol Biochem; 2016 Feb; 99():162-70. PubMed ID: 26760954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering salinity tolerance in plants: progress and prospects.
    Wani SH; Kumar V; Khare T; Guddimalli R; Parveda M; Solymosi K; Suprasanna P; Kavi Kishor PB
    Planta; 2020 Mar; 251(4):76. PubMed ID: 32152761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.