These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 37354057)
1. Interfacing Coacervates with Membranes: From Artificial Organelles and Hybrid Protocells to Intracellular Delivery. Lu T; Javed S; Bonfio C; Spruijt E Small Methods; 2023 Dec; 7(12):e2300294. PubMed ID: 37354057 [TBL] [Abstract][Full Text] [Related]
2. Complex coacervates as artificial membraneless organelles and protocells. Deng NN Biomicrofluidics; 2020 Sep; 14(5):051301. PubMed ID: 32922586 [TBL] [Abstract][Full Text] [Related]
3. Endocytosis of Coacervates into Liposomes. Lu T; Liese S; Schoenmakers L; Weber CA; Suzuki H; Huck WTS; Spruijt E J Am Chem Soc; 2022 Aug; 144(30):13451-13455. PubMed ID: 35878395 [TBL] [Abstract][Full Text] [Related]
4. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments. Smokers IBA; Visser BS; Slootbeek AD; Huck WTS; Spruijt E Acc Chem Res; 2024 Jul; 57(14):1885-1895. PubMed ID: 38968602 [TBL] [Abstract][Full Text] [Related]
5. Coacervate Droplets for Synthetic Cells. Lin Z; Beneyton T; Baret JC; Martin N Small Methods; 2023 Dec; 7(12):e2300496. PubMed ID: 37462244 [TBL] [Abstract][Full Text] [Related]
6. Spatiotemporal control of coacervate formation within liposomes. Deshpande S; Brandenburg F; Lau A; Last MGF; Spoelstra WK; Reese L; Wunnava S; Dogterom M; Dekker C Nat Commun; 2019 Apr; 10(1):1800. PubMed ID: 30996302 [TBL] [Abstract][Full Text] [Related]
7. Photoswitchable Molecular Communication between Programmable DNA-Based Artificial Membraneless Organelles. Zhao QH; Cao FH; Luo ZH; Huck WTS; Deng NN Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202117500. PubMed ID: 35090078 [TBL] [Abstract][Full Text] [Related]
8. Active coacervate droplets as a model for membraneless organelles and protocells. Donau C; Späth F; Sosson M; Kriebisch BAK; Schnitter F; Tena-Solsona M; Kang HS; Salibi E; Sattler M; Mutschler H; Boekhoven J Nat Commun; 2020 Oct; 11(1):5167. PubMed ID: 33056997 [TBL] [Abstract][Full Text] [Related]
9. Continuous Transformation from Membrane-Less Coacervates to Membranized Coacervates and Giant Vesicles: Toward Multicompartmental Protocells with Complex (Membrane) Architectures. Zhou Y; Zhang K; Moreno S; Temme A; Voit B; Appelhans D Angew Chem Int Ed Engl; 2024 Aug; 63(34):e202407472. PubMed ID: 38847278 [TBL] [Abstract][Full Text] [Related]
10. pH-Controlled Coacervate-Membrane Interactions within Liposomes. Last MGF; Deshpande S; Dekker C ACS Nano; 2020 Apr; 14(4):4487-4498. PubMed ID: 32239914 [TBL] [Abstract][Full Text] [Related]
11. Dipeptide coacervates as artificial membraneless organelles for bioorthogonal catalysis. Cao S; Ivanov T; Heuer J; Ferguson CTJ; Landfester K; Caire da Silva L Nat Commun; 2024 Jan; 15(1):39. PubMed ID: 38169470 [TBL] [Abstract][Full Text] [Related]
12. Peptide-based coacervates as biomimetic protocells. Abbas M; Lipiński WP; Wang J; Spruijt E Chem Soc Rev; 2021 Mar; 50(6):3690-3705. PubMed ID: 33616129 [TBL] [Abstract][Full Text] [Related]
13. Dynamic Control of Functional Coacervates in Synthetic Cells. Nair KS; Radhakrishnan S; Bajaj H ACS Synth Biol; 2023 Jul; 12(7):2168-2177. PubMed ID: 37337618 [TBL] [Abstract][Full Text] [Related]
14. Phase Separation in Membrane Biology: The Interplay between Membrane-Bound Organelles and Membraneless Condensates. Zhao YG; Zhang H Dev Cell; 2020 Oct; 55(1):30-44. PubMed ID: 32726575 [TBL] [Abstract][Full Text] [Related]
15. Selective amide bond formation in redox-active coacervate protocells. Wang J; Abbas M; Wang J; Spruijt E Nat Commun; 2023 Dec; 14(1):8492. PubMed ID: 38129391 [TBL] [Abstract][Full Text] [Related]