These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37354104)

  • 21. A new unnatural base pair system between fluorophore and quencher base analogues for nucleic acid-based imaging technology.
    Kimoto M; Mitsui T; Yamashige R; Sato A; Yokoyama S; Hirao I
    J Am Chem Soc; 2010 Nov; 132(43):15418-26. PubMed ID: 20939572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efforts toward creating unnatural base pairs for an expanded genetic code.
    Hirao I; Mitsui T; Fujiwara T; Kimoto M; To T; Okuni T; Sato A; Harada Y; Yokoyama S
    Nucleic Acids Res Suppl; 2001; (1):17-8. PubMed ID: 12836242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolving Aptamers with Unnatural Base Pairs.
    Kimoto M; Matsunaga KI; Hirao I
    Curr Protoc Chem Biol; 2017 Dec; 9(4):315-339. PubMed ID: 29241296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PCR with an expanded genetic alphabet.
    Malyshev DA; Seo YJ; Ordoukhanian P; Romesberg FE
    J Am Chem Soc; 2009 Oct; 131(41):14620-1. PubMed ID: 19788296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic alphabet expansion biotechnology by creating unnatural base pairs.
    Lee KH; Hamashima K; Kimoto M; Hirao I
    Curr Opin Biotechnol; 2018 Jun; 51():8-15. PubMed ID: 29049900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of an unnatural base pair toward natural-like replication.
    Seo YJ; Hwang GT; Ordoukhanian P; Romesberg FE
    J Am Chem Soc; 2009 Mar; 131(9):3246-52. PubMed ID: 19256568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Replicating an expanded genetic alphabet in cells.
    Chaput JC
    Chembiochem; 2014 Sep; 15(13):1869-71. PubMed ID: 25044483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical characterization of the conformational features of unnatural oligonucleotides containing a six nucleotide genetic alphabet.
    Wang W; Sheng X; Zhang S; Huang F; Sun C; Liu J; Chen D
    Phys Chem Chem Phys; 2016 Oct; 18(41):28492-28501. PubMed ID: 27711557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural Basis for Expansion of the Genetic Alphabet with an Artificial Nucleobase Pair.
    Betz K; Kimoto M; Diederichs K; Hirao I; Marx A
    Angew Chem Int Ed Engl; 2017 Sep; 56(39):12000-12003. PubMed ID: 28594080
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High Fidelity, Efficiency and Functionalization of Ds-Px Unnatural Base Pairs in PCR Amplification for a Genetic Alphabet Expansion System.
    Okamoto I; Miyatake Y; Kimoto M; Hirao I
    ACS Synth Biol; 2016 Nov; 5(11):1220-1230. PubMed ID: 26814421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Progress Toward a Semi-Synthetic Organism with an Unrestricted Expanded Genetic Alphabet.
    Dien VT; Holcomb M; Feldman AW; Fischer EC; Dwyer TJ; Romesberg FE
    J Am Chem Soc; 2018 Nov; 140(47):16115-16123. PubMed ID: 30418780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards the enzymatic formation of artificial metal base pairs with a carboxy-imidazole-modified nucleotide.
    Röthlisberger P; Levi-Acobas F; Sarac I; Marlière P; Herdewijn P; Hollenstein M
    J Inorg Biochem; 2019 Feb; 191():154-163. PubMed ID: 30529723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Minor groove hydrogen bonds and the replication of unnatural base pairs.
    Matsuda S; Leconte AM; Romesberg FE
    J Am Chem Soc; 2007 May; 129(17):5551-7. PubMed ID: 17411040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of interstrand hydrophobic packing interactions within unnatural DNA base pairs.
    Matsuda S; Romesberg FE
    J Am Chem Soc; 2004 Nov; 126(44):14419-27. PubMed ID: 15521761
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Site-specific labeling of DNA and RNA using an efficiently replicated and transcribed class of unnatural base pairs.
    Seo YJ; Malyshev DA; Lavergne T; Ordoukhanian P; Romesberg FE
    J Am Chem Soc; 2011 Dec; 133(49):19878-88. PubMed ID: 21981600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From polymerase engineering to semi-synthetic life: artificial expansion of the central dogma.
    Sun L; Ma X; Zhang B; Qin Y; Ma J; Du Y; Chen T
    RSC Chem Biol; 2022 Oct; 3(10):1173-1197. PubMed ID: 36320892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzymatic Formation of an Artificial Base Pair Using a Modified Purine Nucleoside Triphosphate.
    Flamme M; Röthlisberger P; Levi-Acobas F; Chawla M; Oliva R; Cavallo L; Gasser G; Marlière P; Herdewijn P; Hollenstein M
    ACS Chem Biol; 2020 Nov; 15(11):2872-2884. PubMed ID: 33090769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzymatic construction of metal-mediated nucleic acid base pairs.
    Flamme M; Figazzolo C; Gasser G; Hollenstein M
    Metallomics; 2021 Apr; 13(4):. PubMed ID: 33791776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovery, implications and initial use of semi-synthetic organisms with an expanded genetic alphabet/code.
    Romesberg FE
    Philos Trans R Soc Lond B Biol Sci; 2023 Feb; 378(1871):20220030. PubMed ID: 36633274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unnatural base pair systems for sensing and diagnostic applications.
    Kimoto M; Cox RS; Hirao I
    Expert Rev Mol Diagn; 2011 Apr; 11(3):321-31. PubMed ID: 21463241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.