These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 37355390)
1. The stability of FeH He Y; Kim DY; Struzhkin VV; Geballe ZM; Prakapenka V; Mao HK Sci Bull (Beijing); 2023 Jul; 68(14):1567-1573. PubMed ID: 37355390 [TBL] [Abstract][Full Text] [Related]
2. The pyrite-type high-pressure form of FeOOH. Nishi M; Kuwayama Y; Tsuchiya J; Tsuchiya T Nature; 2017 Jul; 547(7662):205-208. PubMed ID: 28678774 [TBL] [Abstract][Full Text] [Related]
3. Superionic iron hydride shapes ultralow-velocity zones at Earth's core-mantle boundary. Zhang Y; Wang W; Li Y; Wu Z Proc Natl Acad Sci U S A; 2024 Aug; 121(35):e2406386121. PubMed ID: 39163332 [TBL] [Abstract][Full Text] [Related]
4. Hexagonal Close-packed Iron Hydride behind the Conventional Phase Diagram. Machida A; Saitoh H; Hattori T; Sano-Furukawa A; Funakoshi KI; Sato T; Orimo SI; Aoki K Sci Rep; 2019 Aug; 9(1):12290. PubMed ID: 31444386 [TBL] [Abstract][Full Text] [Related]
5. Prediction of a reservoir of N-rich high-energy density material at the Earth's mantle. Yang K; Shi J; Cui W; Hao J; Li Y Phys Chem Chem Phys; 2023 Aug; 25(30):20281-20286. PubMed ID: 37490009 [TBL] [Abstract][Full Text] [Related]
6. Interstitial hydrogen atoms in face-centered cubic iron in the Earth's core. Ikuta D; Ohtani E; Sano-Furukawa A; Shibazaki Y; Terasaki H; Yuan L; Hattori T Sci Rep; 2019 May; 9(1):7108. PubMed ID: 31068634 [TBL] [Abstract][Full Text] [Related]
7. Chemical interaction of Fe and Al(2)O3 as a source of heterogeneity at the Earth's core-mantle boundary. Dubrovinsky L; Annersten H; Dubrovinskaia N; Westman F; Harryson H; Fabrichnaya O; Carlson S Nature; 2001 Aug; 412(6846):527-9. PubMed ID: 11484050 [TBL] [Abstract][Full Text] [Related]
8. Ultrahigh-Pressure Magnesium Hydrosilicates as Reservoirs of Water in Early Earth. Li HF; Oganov AR; Cui H; Zhou XF; Dong X; Wang HT Phys Rev Lett; 2022 Jan; 128(3):035703. PubMed ID: 35119889 [TBL] [Abstract][Full Text] [Related]
9. FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles. Hu Q; Kim DY; Yang W; Yang L; Meng Y; Zhang L; Mao HK Nature; 2016 Jun; 534(7606):241-4. PubMed ID: 27279220 [TBL] [Abstract][Full Text] [Related]
10. Melting and defect transitions in FeO up to pressures of Earth's core-mantle boundary. Dobrosavljevic VV; Zhang D; Sturhahn W; Chariton S; Prakapenka VB; Zhao J; Toellner TS; Pardo OS; Jackson JM Nat Commun; 2023 Nov; 14(1):7336. PubMed ID: 37957142 [TBL] [Abstract][Full Text] [Related]
11. Dynamical stability of Fe-H in the Earth's mantle and core regions. Isaev EI; Skorodumova NV; Ahuja R; Vekilov YK; Johansson B Proc Natl Acad Sci U S A; 2007 May; 104(22):9168-71. PubMed ID: 17483486 [TBL] [Abstract][Full Text] [Related]
12. Evidence for the stability of ultrahydrous stishovite in Earth's lower mantle. Lin Y; Hu Q; Meng Y; Walter M; Mao HK Proc Natl Acad Sci U S A; 2020 Jan; 117(1):184-189. PubMed ID: 31843935 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones. Liu J; Hu Q; Young Kim D; Wu Z; Wang W; Xiao Y; Chow P; Meng Y; Prakapenka VB; Mao HK; Mao WL Nature; 2017 Nov; 551(7681):494-497. PubMed ID: 29168804 [TBL] [Abstract][Full Text] [Related]
14. Ultralow Melting Temperature of High-Pressure Face-Centered Cubic Superionic Ice. Niu C; Zhang H; Zhang J; Zeng Z; Wang X J Phys Chem Lett; 2022 Aug; 13(32):7448-7453. PubMed ID: 35930621 [TBL] [Abstract][Full Text] [Related]
15. Earth's Core-Mantle Boundary: Results of Experiments at High Pressures and Temperatures. Knittle E; Jeanloz R Science; 1991 Mar; 251(5000):1438-43. PubMed ID: 17779437 [TBL] [Abstract][Full Text] [Related]
16. High-pressure phase of brucite stable at Earth's mantle transition zone and lower mantle conditions. Hermann A; Mookherjee M Proc Natl Acad Sci U S A; 2016 Dec; 113(49):13971-13976. PubMed ID: 27872307 [TBL] [Abstract][Full Text] [Related]
17. Spin crossover and iron-rich silicate melt in the Earth's deep mantle. Nomura R; Ozawa H; Tateno S; Hirose K; Hernlund J; Muto S; Ishii H; Hiraoka N Nature; 2011 May; 473(7346):199-202. PubMed ID: 21516105 [TBL] [Abstract][Full Text] [Related]
18. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction. Anzellini S; Dewaele A; Mezouar M; Loubeyre P; Morard G Science; 2013 Apr; 340(6131):464-6. PubMed ID: 23620049 [TBL] [Abstract][Full Text] [Related]
19. Core origin of seismic velocity anomalies at Earth's core-mantle boundary. Fu S; Chariton S; Prakapenka VB; Shim SH Nature; 2023 Mar; 615(7953):646-651. PubMed ID: 36792829 [TBL] [Abstract][Full Text] [Related]
20. Iron-silica interaction at extreme conditions and the electrically conducting layer at the base of Earth's mantle. Dubrovinsky L; Dubrovinskaia N; Langenhorst F; Dobson D; Rubie D; Gessmann C; Abrikosov IA; Johansson B; Baykov VI; Vitos L; Le Bihan T; Crichton WA; Dmitriev V; Weber HP Nature; 2003 Mar; 422(6927):58-61. PubMed ID: 12621431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]