These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37355514)

  • 41. Electrokinetic remediation of contaminants of emergent concern in clay soil: Effect of operating parameters.
    Guedes P; Lopes V; Couto N; Mateus EP; Pereira CS; Ribeiro AB
    Environ Pollut; 2019 Oct; 253():625-635. PubMed ID: 31330354
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermally-induced changes in tropical soils properties and potential implications to sequential nature-based solutions.
    Leite ECP; Rodrigues FM; Horimouti TST; Shinzato MC; Nakayama CR; Freitas JG
    J Contam Hydrol; 2021 Aug; 241():103808. PubMed ID: 33866141
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Copper (Cu) speciation in organic-waste (OW) amended soil: Instability of OW-borne Cu(I) sulfide and role of clay and iron oxide minerals.
    Formentini TA; Basile-Doelsch I; Legros S; Frierdich AJ; Pinheiro A; Fernandes CVS; Mallmann FJK; Borschneck D; da Veiga M; Doelsch E
    Sci Total Environ; 2022 Nov; 848():157779. PubMed ID: 35926606
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Purification and water resource circulation utilization of Cd-containing wastewater during microbial remediation of Cd-polluted soil.
    Deng Y; Fu S; Xu M; Liu H; Jiang L; Liu X; Jiang H
    Environ Res; 2023 Feb; 219():115036. PubMed ID: 36502910
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of 2- and 3-compartment electrodialytic remediation cells for oil polluted soil from northwest Russia.
    Shouli Pour F; Jensen PE; Pedersen KB; Lejon T
    Environ Technol; 2021 Nov; 42(25):3900-3906. PubMed ID: 32241239
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Removal of sulfur and nitrogen pollutants in a sediment microbial fuel cell coupled with Vallisneria natans: Efficiency, microbial community structure, and functional genes.
    Zhao T; Huang S; Zhang Y; Chow AT; Chen P; Wang Y; Lu Y; Xiong J
    Chemosphere; 2024 Apr; 354():141667. PubMed ID: 38485002
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mesocosm trials of bioremediation of contaminated soil of a petroleum refinery: comparison of natural attenuation, biostimulation and bioaugmentation.
    Couto MN; Monteiro E; Vasconcelos MT
    Environ Sci Pollut Res Int; 2010 Aug; 17(7):1339-46. PubMed ID: 20229281
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Remediation of a historically Pb contaminated soil using a model natural Mn oxide waste.
    McCann CM; Gray ND; Tourney J; Davenport RJ; Wade M; Finlay N; Hudson-Edwards KA; Johnson KL
    Chemosphere; 2015 Nov; 138():211-7. PubMed ID: 26073590
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Natural Mineral-Based Solid Oxide Fuel Cell with Heterogeneous Nanocomposite Derived from Hematite and Rare-Earth Minerals.
    Xia C; Cai Y; Ma Y; Wang B; Zhang W; Karlsson M; Wu Y; Zhu B
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20748-55. PubMed ID: 27483426
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hierarchical porous mussel shells as soil amendment for oil spill remediation.
    Lu W; Lu S; Jing H; Sun J; Ji L; Guo J; Wang Y; Cai L; Song F; Song W
    Environ Technol; 2022 Sep; 43(21):3189-3197. PubMed ID: 33856967
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tropical soil remediation from pyrene: Release the power of natural iron content in soil for the efficient oxidant's activation.
    Qutob M; Rafatullah M; Muhammad SA; Alamry KA; Hussein MA
    J Environ Manage; 2024 Feb; 353():120179. PubMed ID: 38295641
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cadmium adsorption behavior of porous and reduced graphene oxide and its potential for promoting cadmium migration during soil electrokinetic remediation.
    Xu JC; Ma Q; Chen C; Wu QT; Long XX
    Chemosphere; 2020 Nov; 259():127441. PubMed ID: 32593826
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent trends and economic significance of modified/functionalized biochars for remediation of environmental pollutants.
    Murtaza G; Ahmed Z; Valipour M; Ali I; Usman M; Iqbal R; Zulfiqar U; Rizwan M; Mahmood S; Ullah A; Arslan M; Rehman MHU; Ditta A; Tariq A
    Sci Rep; 2024 Jan; 14(1):217. PubMed ID: 38167973
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of biochar on soil bioelectrochemical remediation: behind roles, progress, and potential.
    Rushimisha IE; Li X; Han T; Chen X; Abdoul Magid ASI; Sun Y; Li Y
    Crit Rev Biotechnol; 2024 Feb; 44(1):120-138. PubMed ID: 36137569
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recent progresses, challenges, and opportunities of carbon-based materials applied in heavy metal polluted soil remediation.
    Fu T; Zhang B; Gao X; Cui S; Guan CY; Zhang Y; Zhang B; Peng Y
    Sci Total Environ; 2023 Jan; 856(Pt 1):158810. PubMed ID: 36162572
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adsorption kinetics, conformational change, and enzymatic activity of β-glucosidase on hematite (α-Fe
    Zang Y; Liu F; Li X; Sheng A; Zhai J; Liu J
    Colloids Surf B Biointerfaces; 2020 Sep; 193():111115. PubMed ID: 32446160
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review.
    Zhu X; Chen B; Zhu L; Xing B
    Environ Pollut; 2017 Aug; 227():98-115. PubMed ID: 28458251
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of biochar-based materials on the bioavailability of soil organic pollutants and their biological impacts.
    Lin Q; Tan X; Almatrafi E; Yang Y; Wang W; Luo H; Qin F; Zhou C; Zeng G; Zhang C
    Sci Total Environ; 2022 Jun; 826():153956. PubMed ID: 35189211
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sediment microbial fuel cell prefers to degrade organic chemicals with higher polarity.
    Xia C; Xu M; Liu J; Guo J; Yang Y
    Bioresour Technol; 2015 Aug; 190():420-3. PubMed ID: 25936443
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrical current generation from a continuous flow macrophyte biocathode sediment microbial fuel cell (mSMFC) during the degradation of pollutants in urban river sediment.
    Kabutey FT; Ding J; Zhao Q; Antwi P; Quashie FK
    Environ Sci Pollut Res Int; 2020 Oct; 27(28):35364-35380. PubMed ID: 32594445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.