These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37355554)

  • 1. MAC-Seq: Coupling Low-Cost, High-Throughput RNA-Seq with Image-Based Phenotypic Screening in 2D and 3D Cell Models.
    Li XM; Yoannidis D; Ramm S; Luu J; Arnau GM; Semple T; Simpson KJ
    Methods Mol Biol; 2023; 2691():279-325. PubMed ID: 37355554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Cellular RNA Sequencing (HiCAR-Seq): Cost-Effective, High-Throughput 3' mRNA-Seq Method Enabling Individual Sample Quality Control.
    Veeranagouda Y; Zachayus JL; Guillemot JC; Venier O; Didier M
    Curr Protoc Mol Biol; 2020 Sep; 132(1):e123. PubMed ID: 32735043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA Fragmentation and Sequencing (RF-Seq): Cost-Effective, Time-Efficient, and High-Throughput 3' mRNA Sequencing Library Construction in a Single Tube.
    Veeranagouda Y; Remaury A; Guillemot JC; Didier M
    Curr Protoc Mol Biol; 2019 Dec; 129(1):e109. PubMed ID: 31763778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Bacterial Single-Cell RNA-Seq through Automated MATQ-Seq and Cas9-Based Removal of rRNA Reads.
    Homberger C; Hayward RJ; Barquist L; Vogel J
    mBio; 2023 Apr; 14(2):e0355722. PubMed ID: 36880749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative and multiplexed chemical-genetic phenotyping in mammalian cells with QMAP-Seq.
    Brockway S; Wang G; Jackson JM; Amici DR; Takagishi SR; Clutter MR; Bartom ET; Mendillo ML
    Nat Commun; 2020 Nov; 11(1):5722. PubMed ID: 33184288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the coverage and depth of transcriptome by RNA-Seq in chickens.
    Wang Y; Ghaffari N; Johnson CD; Braga-Neto UM; Wang H; Chen R; Zhou H
    BMC Bioinformatics; 2011 Oct; 12 Suppl 10(Suppl 10):S5. PubMed ID: 22165852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Cell Capture, RNA-seq, and Transcriptome Analysis from the Neural Retina.
    Dharmat R; Kim S; Li Y; Chen R
    Methods Mol Biol; 2020; 2092():159-186. PubMed ID: 31786788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. STRT-seq-2i: dual-index 5' single cell and nucleus RNA-seq on an addressable microwell array.
    Hochgerner H; Lönnerberg P; Hodge R; Mikes J; Heskol A; Hubschle H; Lin P; Picelli S; La Manno G; Ratz M; Dunne J; Husain S; Lein E; Srinivasan M; Zeisel A; Linnarsson S
    Sci Rep; 2017 Nov; 7(1):16327. PubMed ID: 29180631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strand-Specific RNA-Seq Applied to Malaria Samples.
    Lu XM; Le Roch K
    Methods Mol Biol; 2021; 2170():19-33. PubMed ID: 32797448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Analysis of Droplet-Based Ultra-High-Throughput Single-Cell RNA-Seq Systems.
    Zhang X; Li T; Liu F; Chen Y; Yao J; Li Z; Huang Y; Wang J
    Mol Cell; 2019 Jan; 73(1):130-142.e5. PubMed ID: 30472192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads.
    Sasagawa Y; Danno H; Takada H; Ebisawa M; Tanaka K; Hayashi T; Kurisaki A; Nikaido I
    Genome Biol; 2018 Mar; 19(1):29. PubMed ID: 29523163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using RNentropy to Detect Significant Variation in Gene Expression Across Multiple RNA-Seq or Single-Cell RNA-Seq Samples.
    Zambelli F; Pavesi G
    Methods Mol Biol; 2021; 2284():77-96. PubMed ID: 33835439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic Comparison of High-throughput Single-Cell and Single-Nucleus Transcriptomes during Cardiomyocyte Differentiation.
    Selewa A; Dohn R; Eckart H; Lozano S; Xie B; Gauchat E; Elorbany R; Rhodes K; Burnett J; Gilad Y; Pott S; Basu A
    Sci Rep; 2020 Jan; 10(1):1535. PubMed ID: 32001747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved bacterial RNA-seq by Cas9-based depletion of ribosomal RNA reads.
    Prezza G; Heckel T; Dietrich S; Homberger C; Westermann AJ; Vogel J
    RNA; 2020 Aug; 26(8):1069-1078. PubMed ID: 32345633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-Seq Data Analysis in Galaxy.
    Batut B; van den Beek M; Doyle MA; Soranzo N
    Methods Mol Biol; 2021; 2284():367-392. PubMed ID: 33835453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Workflow Guide to RNA-Seq Analysis of Chaperone Function and Beyond.
    Holton KM; Giadone RM; Lang BJ; Calderwood SK
    Methods Mol Biol; 2023; 2693():39-60. PubMed ID: 37540425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Empirical assessment of the impact of sample number and read depth on RNA-Seq analysis workflow performance.
    Baccarella A; Williams CR; Parrish JZ; Kim CC
    BMC Bioinformatics; 2018 Nov; 19(1):423. PubMed ID: 30428853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequences to Differences in Gene Expression: Analysis of RNA-Seq Data.
    Pavlovich PV; Cauchy P
    Methods Mol Biol; 2022; 2508():279-318. PubMed ID: 35737247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normalization of Single-Cell RNA-Seq Data.
    Risso D
    Methods Mol Biol; 2021; 2284():303-329. PubMed ID: 33835450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.