These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37355759)

  • 1. Formation mechanism of high-index faceted Pt-Bi alloy nanoparticles by evaporation-induced growth from metal salts.
    Koo K; Shen B; Baik SI; Mao Z; Smeets PJM; Cheuk I; He K; Dos Reis R; Huang L; Ye Z; Hu X; Mirkin CA; Dravid VP
    Nat Commun; 2023 Jun; 14(1):3790. PubMed ID: 37355759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General preparation for Pt-based alloy nanoporous nanoparticles as potential nanocatalysts.
    Wang D; Zhao P; Li Y
    Sci Rep; 2011; 1():37. PubMed ID: 22355556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis.
    Strasser P; Koh S; Greeley J
    Phys Chem Chem Phys; 2008 Jul; 10(25):3670-83. PubMed ID: 18563228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual Catalytic Properties of High-Energetic-Facet Polar Metal Oxides.
    Li Y; Tsang SCE
    Acc Chem Res; 2021 Jan; 54(2):366-378. PubMed ID: 33382242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimetallic High-Index Faceted Heterostructured Nanoparticles.
    Huang L; Lin H; Zheng CY; Kluender EJ; Golnabi R; Shen B; Mirkin CA
    J Am Chem Soc; 2020 Mar; 142(10):4570-4575. PubMed ID: 32096988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.
    Linic S; Christopher P; Xin H; Marimuthu A
    Acc Chem Res; 2013 Aug; 46(8):1890-9. PubMed ID: 23750539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal and alloy nanoparticles by amine-borane reduction of metal salts by solid-phase synthesis: atom economy and green process.
    Sanyal U; Jagirdar BR
    Inorg Chem; 2012 Dec; 51(23):13023-33. PubMed ID: 23153303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Index-Facet Metal-Alloy Nanoparticles as Fuel Cell Electrocatalysts.
    Huang L; Zheng CY; Shen B; Mirkin CA
    Adv Mater; 2020 Jul; 32(30):e2002849. PubMed ID: 32567137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface facet dependence of competing alloying mechanisms.
    Wang Y; Papanikolaou KG; Hannagan RT; Patel DA; Balema TA; Cramer LA; Kress PL; Stamatakis M; Sykes ECH
    J Chem Phys; 2020 Dec; 153(24):244702. PubMed ID: 33380103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape regulation of high-index facet nanoparticles by dealloying.
    Huang L; Liu M; Lin H; Xu Y; Wu J; Dravid VP; Wolverton C; Mirkin CA
    Science; 2019 Sep; 365(6458):1159-1163. PubMed ID: 31515391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Windowless Observation of Evaporation-Induced Coarsening of Au-Pt Nanoparticles in Polymer Nanoreactors.
    Du JS; Chen PC; Meckes B; Kluender EJ; Xie Z; Dravid VP; Mirkin CA
    J Am Chem Soc; 2018 Jun; 140(23):7213-7221. PubMed ID: 29856627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine tuning of graphene-metal adhesion by surface alloying.
    Alfè D; Pozzo M; Miniussi E; Günther S; Lacovig P; Lizzit S; Larciprete R; Santos Burgos B; Menteş TO; Locatelli A; Baraldi A
    Sci Rep; 2013; 3():2430. PubMed ID: 23938361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure engineering in multimetallic high-index facet nanocatalysts.
    Shen B; Huang L; Shen J; He K; Zheng CY; Dravid VP; Wolverton C; Mirkin CA
    Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34162710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relating structural aspects of bimetallic Pt(3)Cr(1)/C nanoparticles to their electrocatalytic activity, stability, and selectivity in the oxygen reduction reaction.
    Taufany F; Pan CJ; Chou HL; Rick J; Chen YS; Liu DG; Lee JF; Tang MT; Hwang BJ
    Chemistry; 2011 Sep; 17(38):10724-35. PubMed ID: 21837730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of monodisperse FePt alloy nanocrystals using air-stable precursors: fatty acids as alloying mediator and reductant for Fe3+ precursors.
    Zhao F; Rutherford M; Grisham SY; Peng X
    J Am Chem Soc; 2009 Apr; 131(14):5350-8. PubMed ID: 19301824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid.
    Zhang Z; Wang Y; Wang X
    Nanoscale; 2011 Apr; 3(4):1663-74. PubMed ID: 21311802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic Strategies to Enhance the Electrocatalytic Properties of Branched Metal Nanoparticles.
    Poerwoprajitno AR; Cheong S; Gloag L; Gooding JJ; Tilley RD
    Acc Chem Res; 2022 Jun; 55(12):1693-1702. PubMed ID: 35616935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.
    Cao X; Fu Q; Luo Y
    Phys Chem Chem Phys; 2014 May; 16(18):8367-75. PubMed ID: 24658397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Generic Wet Impregnation Method for Preparing Substrate-Supported Platinum Group Metal and Alloy Nanoparticles with Controlled Particle Morphology.
    Zhang C; Oliaee SN; Hwang SY; Kong X; Peng Z
    Nano Lett; 2016 Jan; 16(1):164-9. PubMed ID: 26642094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.