These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 37356249)
1. Yellow pigments produced by oxidative oligomerization of dihydrochalcone glucoside and the reaction mechanism. Liu ZB; Matsuo Y; Saito Y; Huang YL; Li DP; Nonaka GI; Tanaka T Food Chem; 2023 Nov; 426():136671. PubMed ID: 37356249 [TBL] [Abstract][Full Text] [Related]
2. A new sweet dihydrochalcone-glucoside from leaves of Lithocarpus pachyphyllus (Kurz) Rehd. (Fagaceae). Qin XD; Liu JK Z Naturforsch C J Biosci; 2003; 58(9-10):759-61. PubMed ID: 14577645 [TBL] [Abstract][Full Text] [Related]
3. Formation of yellow, orange, and red pigments in the reaction of alk-2-enals with 2-thiobarbituric acid. Kosugi H; Kato T; Kikugawa K Anal Biochem; 1987 Sep; 165(2):456-64. PubMed ID: 3425914 [TBL] [Abstract][Full Text] [Related]
4. Chemistry of color formation during rooibos fermentation. Heinrich T; Willenberg I; Glomb MA J Agric Food Chem; 2012 May; 60(20):5221-8. PubMed ID: 22571468 [TBL] [Abstract][Full Text] [Related]
5. Hemisynthesis and structural and chromatic characterization of delphinidin 3-O-glucoside-vescalagin hybrid pigments. García-Estévez I; Jacquet R; Alcalde-Eon C; Rivas-Gonzalo JC; Escribano-Bailón MT; Quideau S J Agric Food Chem; 2013 Nov; 61(47):11560-8. PubMed ID: 24215431 [TBL] [Abstract][Full Text] [Related]
6. The blue anthocyanin pigments from the blue flowers of Heliophila coronopifolia L. (Brassicaceae). Saito N; Tatsuzawa F; Toki K; Shinoda K; Shigihara A; Honda T Phytochemistry; 2011 Dec; 72(17):2219-29. PubMed ID: 21903230 [TBL] [Abstract][Full Text] [Related]
7. Trilobatin, an Active Dihydrochalcone from Duan YY; Mi XJ; Su WY; Tang S; Jiang S; Wang Z; Zhao LC; Li W ACS Omega; 2022 Oct; 7(42):37401-37409. PubMed ID: 36312396 [TBL] [Abstract][Full Text] [Related]
8. Color characteristics of monascus pigments derived by fermentation with various amino acids. Jung H; Kim C; Kim K; Shin CS J Agric Food Chem; 2003 Feb; 51(5):1302-6. PubMed ID: 12590473 [TBL] [Abstract][Full Text] [Related]
9. Dihydrochalcones from the leaves of Wei WW; Wu P; You XY; Xue JH; Xu LX; Wei XY J Asian Nat Prod Res; 2021 Sep; 23(9):819-824. PubMed ID: 32646247 [TBL] [Abstract][Full Text] [Related]
10. Identification of the bioactive components of orally administered Lithocarpus polystachyus Rehd and their metabolites in rats by liquid chromatography coupled to LTQ Orbitrap mass spectrometry. Li X; Zhao Y; Hou S; Huang S; Yang W; Lai X; Zeng X J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jul; 962():37-43. PubMed ID: 24887594 [TBL] [Abstract][Full Text] [Related]
11. Antioxidant Structure⁻Activity Relationship Analysis of Five Dihydrochalcones. Li X; Chen B; Xie H; He Y; Zhong D; Chen D Molecules; 2018 May; 23(5):. PubMed ID: 29757201 [TBL] [Abstract][Full Text] [Related]
12. Study on changes in pigment composition during the blooming period of safflower based on plant metabolomics and semi-quantitative analysis. Pu ZJ; Zhang S; Tang YP; Shi XQ; Tao HJ; Yan H; Chen JQ; Yue SJ; Chen YY; Zhu ZH; Zhou GS; Su SL; Duan JA J Sep Sci; 2021 Nov; 44(22):4082-4091. PubMed ID: 34514725 [TBL] [Abstract][Full Text] [Related]
13. Phytochemical identification of Lithocarpus polystachyus extracts by ultra-high-performance liquid chromatography-quadrupole time-of-flight-MS and their protein tyrosine phosphatase 1B and α-glucosidase activities. Meng Y; Ding L; Wang Y; Nie QT; Xing YY; Ren Q Biomed Chromatogr; 2020 Jan; 34(1):e4705. PubMed ID: 31629370 [TBL] [Abstract][Full Text] [Related]
14. Production of water-soluble yellow pigments via high glucose stress fermentation of Monascus ruber CGMCC 10910. Wang M; Huang T; Chen G; Wu Z Appl Microbiol Biotechnol; 2017 Apr; 101(8):3121-3130. PubMed ID: 28091787 [TBL] [Abstract][Full Text] [Related]
15. Acylated pelargonidin glycosides from the red-purple flowers of Iberis umbellata L. and the red flowers of Erysimum × cheiri (L.) Crantz (Brassicaceae). Tatsuzawa F Phytochemistry; 2019 Mar; 159():108-118. PubMed ID: 30605852 [TBL] [Abstract][Full Text] [Related]
16. Preparative isolation, quantification and antioxidant activity of dihydrochalcones from Sweet Tea (Lithocarpus polystachyus Rehd.). Sun Y; Li W; Liu Z J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Oct; 1002():372-8. PubMed ID: 26363372 [TBL] [Abstract][Full Text] [Related]
17. A novel black tea pigment and two new oxidation products of epigallocatechin-3-O-gallate. Tanaka T; Matsuo Y; Kouno I J Agric Food Chem; 2005 Sep; 53(19):7571-8. PubMed ID: 16159188 [TBL] [Abstract][Full Text] [Related]
18. Identification of candidate amino acids involved in the formation of blue pigments in crushed garlic cloves (Allium sativum L.). Cho J; Lee EJ; Yoo KS; Lee SK; Patil BS J Food Sci; 2009; 74(1):C11-6. PubMed ID: 19200080 [TBL] [Abstract][Full Text] [Related]
19. Preparation and Antioxidant Activity of Ethyl-Linked Anthocyanin-Flavanol Pigments from Model Wine Solutions. Li L; Zhang M; Zhang S; Cui Y; Sun B Molecules; 2018 May; 23(5):. PubMed ID: 29751487 [TBL] [Abstract][Full Text] [Related]
20. Pigmentary analysis of eggs of the silkworm Bombyx mori. Zhang H; Lin Y; Shen G; Tan X; Lei C; Long W; Liu H; Zhang Y; Xu Y; Wu J; Gu J; Xia Q; Zhao P J Insect Physiol; 2017 Aug; 101():142-150. PubMed ID: 28750999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]