BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37356503)

  • 21. High capacity adsorption of oxytetracycline by lignin-based carbon with mesoporous structure: Adsorption behavior and mechanism.
    Zhou H; Jiao G; Li X; Gao C; Zhang Y; Hashan D; Liu J; She D
    Int J Biol Macromol; 2023 Apr; 234():123689. PubMed ID: 36801292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced removal of oxytetracycline from wastewater using bimetallic Fe/Ni nanoparticles combined with ZIF-8 nanocomposites.
    Jin X; Li H; Zhu X; Li N; Owens G; Chen Z
    J Environ Manage; 2022 Sep; 318():115526. PubMed ID: 35724576
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective removal of oxytetracycline by molecularly imprinted magnetic biochar.
    Jiao Y; Yi Y; Fang Z; Eric Tsang P
    Bioresour Technol; 2024 Mar; 395():130394. PubMed ID: 38301940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical adsorption of oxytetracycline from aqueous solution by modified molecular sieves.
    Lv J; Ma Y; Chang X; Fang J; Cai L; Ma Y; Fan S
    Water Sci Technol; 2017 Mar; 75(5-6):1221-1232. PubMed ID: 28272051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Benign zinc oxide betaine-modified biochar nanocomposites for phosphate removal from aqueous solutions.
    Nakarmi A; Bourdo SE; Ruhl L; Kanel S; Nadagouda M; Kumar Alla P; Pavel I; Viswanathan T
    J Environ Manage; 2020 Oct; 272():111048. PubMed ID: 32677621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fe-modified fly ash/cotton stalk biochar composites for efficient removal of phosphate in water: mechanisms and green-reuse potential.
    Hao M; Wu W; Habibul N; Chai G; Ma X; Ma X
    Environ Sci Pollut Res Int; 2023 Jun; 30(27):70827-70841. PubMed ID: 37155106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does soluble starch improve the removal of Cr(VI) by nZVI loaded on biochar?
    Yang C; Ge C; Li X; Li L; Wang B; Lin A; Yang W
    Ecotoxicol Environ Saf; 2021 Jan; 208():111552. PubMed ID: 33396093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and characterization of wheat straw biochar loaded with aluminium/lanthanum hydroxides: a novel adsorbent for removing fluoride from drinking water.
    Yan L; Gu W; Zhou N; Ye C; Yang Y
    Environ Technol; 2022 Jul; 43(18):2771-2784. PubMed ID: 33719868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel ball-milled biochar-vermiculite nanocomposites effectively adsorb aqueous As(Ⅴ).
    Li F; Wan Y; Chen J; Hu X; Tsang DCW; Wang H; Gao B
    Chemosphere; 2020 Dec; 260():127566. PubMed ID: 32663674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of manganese-iron oxide nanocomposite immobilized on powdered activated carbon as an efficient activator of peroxymonosulfate for antibiotics degradation: Conjunction of adsorption, radical and nonradical processes.
    Zhou J; Wang S
    Environ Res; 2023 Dec; 238(Pt 1):117150. PubMed ID: 37716385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Green synthesis of graphitic nanobiochar for the removal of emerging contaminants in aqueous media.
    Ramanayaka S; Tsang DCW; Hou D; Ok YS; Vithanage M
    Sci Total Environ; 2020 Mar; 706():135725. PubMed ID: 31940729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of tetracycline and oxytetracycline by microscale zerovalent iron and formation of transformation products.
    Hanay O; Yıldız B; Aslan S; Hasar H
    Environ Sci Pollut Res Int; 2014 Mar; 21(5):3774-82. PubMed ID: 24281679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanocomposites of zero-valent iron@biochar derived from agricultural wastes for adsorptive removal of tetracyclines.
    Hao D; Chen Y; Zhang Y; You N
    Chemosphere; 2021 Dec; 284():131342. PubMed ID: 34225129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synergistic effect of Cu-nanoparticles and β-cyclodextrin functionalized reduced graphene oxide nanocomposite on the adsorptive remediation of tetracycline antibiotics.
    Yakout AA; Alshitari W; Akhdhar A
    Carbohydr Polym; 2021 Dec; 273():118528. PubMed ID: 34560942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of biochar-CoFe
    Fito J; Nkambule TTI
    Environ Monit Assess; 2022 Dec; 195(1):241. PubMed ID: 36576670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polyethyleneimine-modified biochar for enhanced phosphate adsorption.
    Li T; Tong Z; Gao B; Li YC; Smyth A; Bayabil HK
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):7420-7429. PubMed ID: 31884531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of activated carbon derived from cotton linter fibers by fused NaOH activation and its application for oxytetracycline (OTC) adsorption.
    Sun Y; Yue Q; Gao B; Li Q; Huang L; Yao F; Xu X
    J Colloid Interface Sci; 2012 Feb; 368(1):521-7. PubMed ID: 22137171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of oxytetracycline from wastewater by biochar modified with biosynthesized iron oxide nanoparticles and carbon nanotubes: Modification performance and adsorption mechanism.
    Fan Y; Su J; Xu L; Liu S; Hou C; Liu Y; Cao S
    Environ Res; 2023 Aug; 231(Pt 3):116307. PubMed ID: 37268205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential of Punica granatum biochar to adsorb Cu(II) in soil.
    Cao Q; Huang Z; Liu S; Wu Y
    Sci Rep; 2019 Jul; 9(1):11116. PubMed ID: 31366925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly efficient removal of tetracyclines from water by a superelastic MOF-based aerogel: Mechanism quantitative analysis and dynamic adsorption.
    Yang L; Bi L; Tao X; Shi L; Liu P; Lv Q; Li X; Li J
    J Environ Manage; 2024 Feb; 353():120169. PubMed ID: 38290264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.